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Preface

This is the first time a Les Houches summer school is fully devoted to Lattice Field
Theory (LFT). This is timely as the progress in the field has been spectacular in the
last years.

In these lectures I will concentrate on the basics and I will deal mostly with the an-
alytical formulation of LFT. The remaining lectures will discuss in detail the essential
algorithmic aspects, as well as the modern perspectives.

There are many good introductory books on the subject (Creutz, 1983; Montvay
and Münster, 1994; Smit, 2002; Rothe, 2005; DeGrand and DeTar, 2006; Gattringer
and Lang, 2010). The goal of my lectures will be to provide a short summary of the
more basic contents of those books.
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On the need of a lattice formulation
of Quantum Field Theory

There is firm experimental evidence that the laws of particle physics are accurately
described by a Quantum Field Theory (QFT).

The experiments at LEP and at flavour factories of the last decades (Amsler et al.,
2008) have established the validity of the Standard Model (SM) up to a level of pre-
cision of 1% or better. The Standard Model is a renormalizable QFT with a simple
Lagrangian that fits in a t-shirt (Fig. 1.1).

Fig. 1.1 t-shirt Standard Model

The pure gauge interactions depend on just three free parameters (the three cou-
pling constants associated to the three gauge groups), and preserve the three discrete
symmetries: parity (P ), charge conjugation (C) and time-reversal (T ). The matter-
gauge interactions do not introduce any further free parameter in the model, but they
violate P and C maximally, and preserve T . On the other hand, the interactions of
the scalar Higgs field, that will be tested soon at the LHC, are poorly understood
theoretically, as they bring real havoc to the theory. This sector contains many new
free parameters that are required to fit data: 22-24 (depending on whether neutrinos



On the need of a lattice formulation of Quantum Field Theory

are Majorana particles or not). It is responsible for the spontaneous breaking of the
gauge symmetry, which is the fundamental pillar of the SM, and a mechanism we do
not really understand. This sector also has the key to the subtle violation of CP and
T symmetries in the SM.

Perturbation theory has given a great deal of information about the SM, but fails
in various situations:

• In processes involving particles with SU(3) interactions: quarks and gluons de-
scribed by the beautifully simple QCD Lagrangian

LQCD = −
1

4g2
F a
µνF

a
µν +

∑

q

ψ̄q(i/D+mq)ψq. (1.1)

QCD is a strongly coupled theory at low energies, resulting in several phenomena
that cannot be understood in perturbation theory: confinement, a mass gap and
spontaneous chiral symmetry breaking. A precise quantitative understanding of
QCD interactions is furthermore needed to test the quark-flavour sector of the
SM, that is expected to be quite sensititive to new physics.

• The Higgs self-interactions are completely untested. The SM version of the Higgs
potential:

V (Φ) = −
µ2

2
Φ†Φ+

λ

4!
(Φ†Φ)2, (1.2)

is probably too naive. It suffers from the so-called triviality problem: the fact that
the only renormalized value of the coupling is zero

lim
Λ→∞

λR = 0, (1.3)

and is therefore a trivial theory, i.e. not phenomenologically viable. Only if there
is a physical cutoff, the renormalized coupling can be non-vanishing, which would
imply that the SM is an effective theory, valid only below some energy scale. If
this is the case, however, the Higgs mass is expected to receive large quadratic
corrections from the higher energy scales. This is the so-called hierarchy prob-
lem. Establishing the triviality of the SM Higgs potential requires to go beyond
perturbation theory.

• Beyond the SM interactions (BSM): there are many alternatives to address the
various open questions in the SM. Even though there is presently no compelling
proposal to extend the SM at high energies (all alternatives involve more free
parameters that the SM), it is quite likely that the SM is not the whole story.
In many of the most popular theories BSM non-perturbative effects come into
play: in SUSY non-perturbative effects are often invoked to break SUSY at low-
energies, technicolor theories are up-scaled versions of QCD and the fashionable
nearly conformal gauge theories also require a non-perturbative approach.

• Origin of chirality. The breaking of parity by the weak interactions is probably
the most intriguing feature of the SM. It is notoriously difficult to ensure chiral
gauge symmetry non-perturbatively. Finding such a formulation is likely to shed
some light on the symmetry principles of the SM.
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For all these reasons, having a non-perturbative tool to solve QFTs is essential. The
only first-principles method is the regularization on a space-time grid that provides a
non-perturbative definition of a regularized QFT (at least those that are asymptoti-
cally free), and can be treated in principle by numerical methods. Clearly this is not
an easy task and the efforts of the lattice community in the past few decades were
concentrated on Yang-Mills and QCD.

Solving Yang-Mills is not only the original goal of the lattice formulation, but it
is still one of the famous Millennium Prize problems1. It will require the proof of the
existence of Yang-Mills theory and the presence of a mass gap2. It would be great if
any of the students in this school would solve this problem, becoming rich in more
than one way...

In these lectures, I will review the foundations of the lattice formulation of scalar,
fermion and gauge field theories, as well as QCD.

1http://www.claymath.org/millennium/Yang-Mills Theory/yangmills.pdf
2Prove that for any compact simple gauge group G, a non-trivial quantum YM theory exists in

R4 and has a non-vanishing mass gap (existence includes establishing axiomatic properties such as
Osterwalder and Schrader)
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Basics of Quantum Field Theory

Quantum Field Theory is the synthesis of quantum mechanics and special relativity,
which can be reached following two very different routes, as the relativistic limit of a
system of many identical quantum particles and from the canonical quantization of
classical fields.

2.1 Relativistic quantum mechanics and Fock space

The Hilbert space of a fixed number of quantum particles is not sufficient to describe
the dynamics of a quantum system in the relativistic domain, because particles can
be created/destroyed in collisions. The appropriate space to describe a relativistic
quantum system is Fock space, the sum of all Hilbert spaces with any fixed number
of particles:

F = |0〉 ⊕H1 ⊕H2...⊕H∞, (2.1)

where |0〉 is the vacuum state, which we assume normalized.
Owing to the (anti-)symmetrization properties of the physical states under per-

mutation of identical particles, the states can be characterized by the occupation
numbers, Ni, i.e. the number of particles in the energy-level Ei. It is possible to define
creation and annihilation operators â†i and âi in Fock space that create/destroy one
particle in the i-th level. If the particles are bosons, these operators have the following
commutation relations:

[
â†i , â

†
j

]
= 0,

[
âi, âj

]
= 0,

[
âi, â

†
j

]
= δij . (2.2)

We can use them to construct all the states of Fock space from the vacuum state |0〉:

|N1, ...., Nn〉 =
(
â†1

)N1

...
(
â†n
)Nn |0〉. (2.3)

An arbitrary observable is an operator in Fock space that can always be written in
terms of creation/annihilation operators as:

Ô =
∑

n1...nn;m1,...mn

On1....nnm1...mn(â1)
n1 ...(ân)

nn(â†1)
m1 ...(â†n)

mn , (2.4)

where On1....mn are numbers such that Ô is Hermitian.
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In the case of free particles, the one-particle states can be chosen to be momentum
eigenstates and the spectrum is continuous:

|p〉 = â†p|0〉, Ep =
√
p2 +m2. (2.5)

The Lorentz-invariant normalization of these states is

〈p|p′〉 = (2π)32Ep δ(p− p′). (2.6)

We can define the so-called field operator:

φ̂†(x) ≡
∫

d3p

(2π)32Ep
e−ip·xâ†p, (2.7)

which acts on the vacuum as

φ̂†(x)|0〉 =
∫

d3p

(2π)32Ep
e−ip·x|p〉 & |x〉, (2.8)

and can therefore be interpreted as creating a particle at point x.

2.2 Canonical Field Quantization

We can also start with a real classical field φ(x, t) with classical Lagrangian and
Hamiltonian given by:

L(φ) =
∫

d3x
1

2

(
φ̇2 − (∇φ)2 −m2

0φ
2
)
, (2.9)

H(φ,π) =

∫
d3x

1

2

(
π2 + (∇φ)2 +m2

0φ
2
)
, (2.10)

where

π =
∂L
∂φ̇

. (2.11)

This classical system can be quantized canonically by identifying the pair of canonical
variables, {φ,π}, with quantum operators {φ̂, π̂}.

In momentum space, it is easy to see that the Hamiltonian describes an infinite
number of harmonic oscillators, one for each momentum, with one quantum of energy
being

Ep =
√
p2 +m2

0. (2.12)

The well-known ladder operators â†p and âp of the harmonic oscillator are related to
the quantum field operator by

φ̂(x, t) =

∫
d3p

(2π)3
1

2Ep

{
âpe

−i(Ept−px) + h.c.
}
. (2.13)

This operator resembles the time-evolved field operator in Fock space of eq. (2.7), if
we identify the ladder operators of the harmonic oscillators with creation/annihilation
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operators in Fock space, providing therefore a particle interpretation to the quantized
field.

Summarizing, the most important physical intuition is that a quantum field is a
bunch of harmonic oscillators, whose ladder operators correspond to creation/annihilation
operators in a Fock space. Particles are therefore interpreted as excitations of a quan-
tum harmonic oscillator. This connection goes also in the opposite direction. Indeed,
Weinberg has shown (Weinberg, 1995) that operators (observables) in Fock space,
eq. (2.4), that satisfy the following conditions

Cluster decomposition ↔ locality
Hermiticity ↔ unitarity

Lorentz invariance ↔ causality

are necessarily functions of quantum field operators, such as eq. (2.13), resulting
therefore in a Quantum Field Theory.

Continuous symmetries such as Lorentz invariance act in Fock space, according to
Wigner’s theorem, as unitary operators 1. It is easy to see that the operator of space
translations by the vector x is

Ûx ≡ e−iP̂x, (2.14)

where P̂ is the momentum operator.
The operator that implements time translations, by x0, i.e. the quantum evolution

operator is given in terms of the Hamiltonian by

Ûx0 ≡ e−iĤx0 . (2.15)

2.3 Field correlation functions and physical observables

The essential assumption that goes into the definition of cross sections and decay
widths, is the existence of asymptotic states, which correspond to a bunch of non-
interacting 1-particle states in the infinite past t → −∞ (in-states) as well as in the
infinite future t → ∞ (out-states). For this to happen two conditions are required:

• Localization of one-particle states or wave-packets

• Localization of the interaction: only when particles get sufficiently close are their
interactions significant

1Some discrete symmetries such as time reversal are implemented by antiunitary operators, but
we will not consider this case here.



Field correlation functions and physical observables

The relation between the scattering matrix elements and field correlation functions
is given by the LSZ (Lehmann, Symanzik and Zimmermann, 1955) reduction formula:

n∏

i=1

∫
d4xie

ipi·xi

k∏

j=1

∫
d4yje

−iqj ·yi〈0|T
(
φ̂(x1)...φ̂(xn)φ̂(y1)....φ̂(yk)

)
|0〉

&p0
i→Epi ,q

0
j→Eqj

n∏

i=1

(
i
√
Z

p2i −m2 + iε

)
k∏

j=1

(
i
√
Z

q2j −m2 + iε

)
〈p1, ....,pn, out|q1, ...,qk; in〉,

(2.16)

where the scattering amplitudes, 〈p1, ....,pn, out|q1, ...,qk; in〉, correspond to k asymp-
totic in states (one-particles states at t = −∞) that end up as n out states (one-particle
states at t = ∞). Z and m are the field renormalization constant and mass that char-
acterize the asymptotic one-particle states. They can be extracted from the spectral
representation of the two-point correlation functions, or Källen-Lehmann representa-
tion (Lehmann, 1954; Källen, 1972), that we derive in the next section. For a derivation
of the LSZ formula see for example (Itzykson and Zuber, 1980; Peskin and Schroeder,
1995).

2.3.1 Källen-Lehmann Spectral representation of the propagator

The two-point correlation function or propagator is a fundamental quantity that allows
to identify the asymptotic states, their masses and field renormalization factors. We
review why this is so.

The invariance of the Hamiltonian under translations implies
[
Ĥ, P̂

]
= 0, i.e. the

eigenstates of the Hamiltonian are also momentum eigenstates;

P̂|α(p)〉 = p|α(p)〉,
Ĥ |α(p)〉 = Ep(α)|α(p)〉, (2.17)

with

E2
p(α) = m(α)2 + p2. (2.18)

Here m(α) is not necessarily a one-particle mass, since |α(p)〉 could represent a mul-
tiparticle state with total momentum p, in which case it is simply the energy of the
system in the rest frame, ie. where the total momentum vanishes. Therefore α labels
all the energy eigenstates of zero momentum.

Using the completeness relation for the full Hilbert space:

1̂ = |0〉〈0|+
∑

α

∫
d3p

(2π)32Ep(α)
|α(p)〉〈α(p)|. (2.19)

we can write the propagator as

〈0|T
(
φ̂(x)φ̂(0)

)
|0〉
∣∣∣
x0>0

= 〈0|φ̂(x)1̂φ̂(0)|0〉 = 〈0|φ̂(0)e−iP̂ ·x1̂φ̂(0)|0〉
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=
∑

α

∫
d3p

(2π)32Ep(α)
e−ip·x

∣∣
p0=Ep(α)

|〈0|φ̂(0)|α(p)〉|2,

(2.20)

where we have used that the operator that implements space-time translations by x is
Ûx = e−iP̂x, where P̂0 = Ĥ , according to eqs. (2.14) and (2.15). We have furthermore
assumed that the vacuum is invariant under temporal and spatial translations (Ûx|0〉 =
|0〉), and that the vacuum expectation value of the field vanishes (〈0|φ̂(0)|0〉 = 0).

We can now relate the state with momentum p and that with zero momentum by
the unitarity transformation that implements the corresponding boost, Ûp:

|α(p)〉 = Ûp|α(0)〉. (2.21)

Since the operator φ̂(0), being a scalar, and the vacuum state are invariant under this
boost

〈0|φ̂(0)|α(p)〉 = 〈0|φ̂(0)|α(0)〉, (2.22)

we finally obtain the famous Källen-Lehmann (KL) formula

〈0|T φ̂(x)φ̂(0)|0〉 =
∑

α

∫
d3p

(2π)32Ep(α)
e−ip·x

∣∣
p0=Ep(α)

|〈0|φ̂(0)|α(p)〉|2

= i
∑

α

∫
d4p

(2π)4
e−ip·x |〈0|φ̂(0)|α(0)〉|2

p2 −m(α)2 + iε
, (2.23)

where the last equality is easy to show by performing a contour integration over p0.
Two observations are in order

• For each state labelled by α there is a field renormalization constant

Zα ≡ |〈0|φ̂(0)|α(0)〉|2, (2.24)

which is the same quantity that characterizes the asymptotic states in the LSZ
relation of eq. (2.16).

• The states do not have to be discrete, therefore the sum over α is really an integral.
It is common to write the KL relation in terms of a spectral density:

〈0|T φ̂(x)φ̂(0)|0〉 =
∫ ∞

0

dM2

2π
ρ(M2)∆(x;M2), (2.25)

with

∆(x;M2) ≡ i

∫
d4p

(2π)4
e−ip·x

p2 −M2 + iε
, (2.26)

and

ρ(M2) =
∑

α∈1particle

(2π) Zα δ(M
2 −m(α)2) + continuum. (2.27)
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2.3.2 Wick rotation

The LSZ reduction formula demonstrates that correlation functions of time-ordered
products of fields:

Wn(t1,x1; ...., tn,xn) = 〈0|φ̂(t1,x1)...φ̂(tn,xn)|0〉, t1 ≥ t2..... ≥ tn, (2.28)

contain all the physical information of the theory. These objects are therefore the pri-
mary quantities to be computed on the lattice. However this is not done in Minkowski
but in Euclidean space, after an analytic continuation.

It is possible to show under general conditions that these functions can be contin-
uously extended to analytic functions in the complex domain of the variables t1, ...tn
so that

Im t1 ≤ Im t2 ≤ ....Im tn. (2.29)

The Euclidean correlation functions or Schwinger functions are defined as:

Sn(x1, ..., xn) = Wn(−ix0
1,x1; ...− ix0

n,xn), (2.30)

where the Euclidean times are x0
i = iti and

x0
1 ≥ x0

2.... ≥ x0
n. (2.31)

The computation of these functions is sufficient to solve the theory. This Euclidean
approach shows all its power in the functional integral representation that we now
describe.

2.4 Functional Formulation of a Scalar Field Theory

Feynman reformulated quantum mechanics via the so-called path integral (Feynman,
1948), that allows to represent the basic time evolution operator of the quantum theory
as an integral over classical paths.

2.4.1 Path integral in quantum mechanics

As stated before, the quantum operator that evolves states from time ti to tf is

Û(tf , ti) = e−iĤ(tf−ti), (2.32)

where Ĥ is the quantum Hamiltonian.

Let us consider a system of one particle with a Hamiltonian Ĥ = P̂ 2

2m + V (x̂). Let
us divide the time interval in a large number, N , of infinitesimal intervals of width τ :

tn = ti + nτ, n = 0, ..., N, τ ≡
tf − ti
N

. (2.33)

We can therefore write the evolution as the composition of infinitesimal evolutions

Û(tf , ti) = Û(tf , tN−1)Û(tN−1, tN−2)....Û (t1, ti). (2.34)
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At each time slice tn we can include the identity operator as the projector on a complete
basis, such as the position basis

1̂ =

∫
d3xn |xn〉〈xn|, (2.35)

therefore

Û(tf , ti) =

(
N−1∏

n=1

∫
d3xn

)
Û(tf , tN−1)|xN−1〉〈xN−1|....|x1〉〈x1|Û(t1, ti)

=

(
N−1∏

n=1

∫
d3xn

)
T̂ |xN−1〉

(
N−1∏

n=2

〈xn|T̂ |xn−1〉

)
〈x1|T̂ , (2.36)

where we have denoted the evolution operator in each interval by the transfer operator,
T̂ :

Û(tn+1, tn) = e−iĤτ ≡ T̂ . (2.37)

The next step is to define a new transfer operator T̂F that coincides with T̂ in the
limit τ → 0, and which makes it easy to evaluate the matrix elements 〈xn|T̂F |xn−1〉.
A possible definition is

T̂F ≡ e−i τ2 V (x̂) e−iτ P̂2

2m e−i τ2 V (x̂), (2.38)

which implies

〈xn+1|T̂F |xn〉 =
√

m

2πiτ
exp

[
iτ

(
m

2

(
xn+1 − xn

τ

)2

−
V (xn+1) + V (xn)

2

)]

=

√
m

2πiτ
eiτL(tn), (2.39)

where the function L is the time-discretized version of the classical Lagrangian

L(t) ≡
1

2
m

(
dx

dt

)2

− V (x), (2.40)

and x(tn) = xn.
Finally, the evolution operator is given by

〈xf |Û(tf , ti)|xi〉 = lim
N→∞

(√
m

2πiτ

)N N∏

n=1

∫
d3xne

iτ
∑N−1

n=0
L(tn)

∣∣∣∣∣
x(tf )≡xf ;x(ti)≡xi

≡ c

∫
Dx(t) e

i
∫ tf

ti
dtL(t)

, (2.41)

where c is a a constant. This amplitude is the path integral over all paths that pass
by the space-time points (ti,xi) and (tf ,xf ).
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Obviously we have not proven here the equivalence between the two representa-
tions (canonical and functional), since the two definitions of the transfer operator in
eqs. (2.37) and (2.38) agree only for small τ .

The path integral representation is therefore an alternative formulation of quan-
tum mechanics. Clearly the link between the world of quantum operators and that
of functional integrals is the transfer operator T̂F , the Hamiltonian being a derived
quantity:

ĤF ≡
i

τ
ln T̂F . (2.42)

ĤF and Ĥ do not coincide, although they are expected to lead to the same physics.
As we have explained above, the quantum time evolution operator can be analyti-

cally continued to imaginary time t → −ix0, and so does the path integral representa-
tion we have just introduced. The transfer operator in Euclidean space is the positive
operator:

T̂E
F = exp

(
−
τ

2
V (x̂)

)
exp

(
−τ

P̂ 2

2m

)
exp

(
−
τ

2
V (x̂)

)
, (2.43)

and the relation with the Euclidean Hamilton operator is therefore

ĤE
F = −

1

τ
T̂E
F . (2.44)

From here onwards we will eliminate the F and E indices for simplicity, and denote
the Euclidean transfer operator by T̂ .

An important role is played in the following by the partition function, which can
be defined as

Z ≡ Tr
[
Û(T/2,−T/2)

]
≡ lim

N→∞
Tr
[
T̂N
]
=

∫

PBC
Dx(t)e

−
∫ T/2

−T/2
Ldt

, (2.45)

where PBC stands for periodic boundary conditions, since now the integration is over
all classical paths that are periodic, i.e xi = xf in eq (2.41) and we sum over xi.

2.4.2 Path integral in Quantum Field Theory

We have reviewed the canonical quantization of a scalar field in section 2.2, which
amounts to considering not one but an infinite number of quantum operators x̂ and
P̂, one pair for each point in space:

{
x̂i, P̂i

}
→
{
φ̂(x), π̂(x)

}
,
[
φ̂(x), π̂(y)

]
= iδ(x− y), (2.46)

satisfying the canonical commutation relations.
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The quantum Hamiltonian is given by (see eq. (2.10)):

Ĥ ≡
∫

dx

[
1

2
π̂2 +

1

2
(∇φ̂)2 + V (φ̂)

]
. (2.47)

The equivalent of the complete position basis is now2

1̂ =

∫ ∏

x

dφ(x)|φ〉〈φ|, (2.48)

where the states |φ〉 are the eigenstates of the field operator

φ̂(x)|φ〉 = φ(x)|φ〉. (2.49)

Following the same steps as in the case of one degree of freedom, we can represent
the time evolution operator in Euclidean time by discretizing time as before in terms
of a transfer operator:

Û(tf , ti) = Û(tf , tN−1)Û(tN−1, tN−2)....Û(t1, ti) ≡ T̂N , Nτ = tf − ti. (2.50)

Û(tf , ti) =

∫ N−1∏

n=1

dφn(xn) T̂ |φN−1〉〈φN−1|T̂ ...|φ1〉〈φ1|T̂ . (2.51)

The transfer operator is the analogous of eq. (2.38) and can be defined as:

T̂ = exp
(
−
τ

2
ĤV

)
exp

(
−τĤK

)
exp

(
−
τ

2
ĤV

)
, (2.52)

where

ĤV ≡
∫

dx

[
1

2
(∇φ̂)2 + V (φ̂)

]
, (2.53)

ĤK ≡
∫

dx
1

2
(π̂)2. (2.54)

We can compute the matrix elements of this transfer operator easily (the operator ĤV

is diagonal in the φ basis, while ĤK is diagonal in the momentum basis) and the result
is

〈φn+1|T̂ |φn〉 = exp

[
−
τ

2

∫
d3x

(
φn+1(x) − φn(x)

τ

)2

+ (∇φn)2 +
V (φn) + V (φn+1)

2

]

= exp (−τL(φn)) , (2.55)

where L is the time-discretized version of the classical Euclidean Lagrangian, eq. (2.9)

〈φf |Û(tf , ti)|φi〉 = lim
N→∞

∫ [ N∏

n=0

∏

xn

dφn(xn)

]
exp

(
−τ

N∑

n=0

L(φn))

)

2In the Schrödinger picture, the wave function is no longer a function of x but of φ(x).
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≡
∫

φ(x, ti) = φi(x)
φ(x, tn) = φf (x)

Dφ exp
(
−
∫

dtL(φ)
)
. (2.56)

We can also define the partition function as

Z = lim
N→∞

Tr
[
T̂N
]
=

∫

PBC
Dφ e−

∫
dtL(φ) =

∫

PBC
Dφ e−S[φ], (2.57)

where

S[φ] =

∫
dtL(φ) =

∫
d4x

{
1

2
(∂µφ(x))

2 + V (φ(x))

}
, (2.58)

is the classical Euclidean action.

2.4.3 Correlation functions in the functional formalism

We are interested in correlation functions. We can easily derive their functional rep-
resentation similarly by noting that for any operator

〈0|Ô(x, t)|0〉 = lim
T→∞

Tr
[
Ôe−ĤT

]

Tr
[
e−ĤT

] = lim
T→∞

Tr
[
Ôe−ĤT

]

Z
, (2.59)

provided |0〉 is the lowest energy state, since the contribution to the trace of the excited
states is exponentially suppressed.

Then we can write the time-ordered correlation function

Sn = 〈0|φ̂(x1, t1)....φ̂(xn, tn)|0〉 = lim
T→∞

Tr
[
φ̂(x1, t1)...φ̂(xn, tn)e

−ĤT
]
/Z. (2.60)

and applying the same procedure of discretizing time we find the functional represen-
tation of the n-point function

Sn =

∫
PBC Dφ e−S[φ]φ(x1, t1)....φ(xn, tn)∫

PBC Dφ e−S[φ]
≡ 〈φ(x1)....φ(xn)〉, (2.61)

where the integrals are over periodic classical fields, as defined above.
Some useful definitions in the context of perturbation theory are:

• the generating functional of correlation functions is

Z[J ] = 〈e
∫

d4xJ(x)φ(x)〉, (2.62)

where we have introduced an external source density J(x) so that

δ

δJ(x1)
....

δ

δJ(xn)
Z[J ]

∣∣∣∣
J=0

= 〈φ(x1)...φ(xn)〉. (2.63)

We define a functional derivative as
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δ

δJ(x)
J(y) = δ(x− y),

δ

δJ(x)

∫
d4yJ(y)φ(y) = φ(x). (2.64)

It is easy to compute Z[J ] in the scalar field theory we are considering for the

free case, ie. for V (φ) = m2
0

2 φ
2. The path integral is Gaussian and the result is

Z[J ] = exp

(
1

2

∫
d4xd4yJ(x)K−1(x, y)J(y)

)
, (2.65)

where

K ≡ −∂µ∂µ +m2
0, (2.66)

is a linear operator acting in the space of real scalar fields. The free propagator is

〈φ(x)φ(y)〉 =
δ2Z[J ]

δJ(x)δJ(y)

∣∣∣∣
J=0

= K−1(x, y) =

∫
d4p

ei(x−y)

p2 +m2
0

. (2.67)

• The generating functional of connected correlation functions W [J ] ≡ lnZ[J ] sat-
isfies:

δ

δJ(x1)
....

δ

δJ(xn)
W [J ] = 〈φ(x1)...φ(xn)〉conn. (2.68)

• The generating functional of vertex functions, which are connected and one-
particle amputated correlation functions, also called one-particle irreducible or
1PI 3, can be obtained from the Legendre transform of W [J ]:

Γ[Φ] = W [J ]−
∫

d4xJ(x)Φ(x)

∣∣∣∣
J[Φ]

(2.69)

where J [Φ] is defined from the solution of equation

δW [J ]

δJ(x)
= Φ(x). (2.70)

The functional derivatives of Γ[Φ] generate the 1PI correlation functions

Γ(n)(x1, ..., xn) =
δ

δΦ(x1)
....

δ

δΦ(xn)
Γ[Φ] = 〈φ(x1)φ(x2)....φ(xn)〉conn,1PI ,(2.71)

or vertex functions that represent the interaction vertices in the Lagrangian and
are therefore the basic objects in the renormalization procedure. More details can
be found in standard books (Peskin and Schroeder, 1995).

All these generating functionals are easy to find in the free case, but not in the
interacting case. At this point one can follow two approaches:

3These are the correlation functions which cannot be made disconnected by cutting out one particle
propagator.
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• Perturbation theory
• A non-perturbative evaluation of the correlation functions, which can be achieved
via a discretization of space-time, known as the lattice formulation. This Euclidean
functional formulation of QFT provides a link between QFT and a statistical sys-
tem. After the discretization of space-time, the functional integrals of eqs. (2.57)
become finite-dimensional ones, and in many cases can be treated by statistical
importance sampling methods. I refer to the lectures of M. Lüscher (Lüscher,
2009) for a general discussion of these methods.

2.5 Symmetries and Ward Identities

Noether’s theorem establishes the connection between continuous symmetries of the
Lagrangian and conserved currents. In the functional formulation, symmetries of the
Lagrangian imply relations between correlation functions that are usually referred to
as Ward-Takahashi identities (Ward, 1950; Takahashi, 1957). These identities are easy
to derive at tree level and can be shown to hold also at the quantum level (Peskin and
Schroeder, 1995).

Let us consider an infinitesimal local field transformation of the form:

φ(x) → φ(x) + εa(x)δaφ(x), (2.72)

which will usually correspond to a unitary transformation. The Lagrangian changes
at first order by

δL[φ] =
δL

δεa(x)
εa(x) +

δL
δ∂µεa(x)

∂µεa(x) +O(ε2). (2.73)

Now let’s consider the generating functional

Z[J ] =

∫
Dφe−S[φ]+

∫
d4xJ(x)φ(x), (2.74)

on which we can perform the change of variables of eq. (2.72)

Z[J ] =

∫
Dφ′e−S[φ′]+

∫
d4xJ(x)φ′(x) = Z[J ] + δZ[J ]. (2.75)

Since this should be true for arbitrary εa(x), and assuming the measure does not
change (Dφ′ = Dφ) we have

δZ[J ]

δεa(x)
=

∫
Dφe−S[φ]+

∫
d4xJ(x)φ(x)

(
∂µJ a

µ −
δL

δεa(x)

∣∣∣∣
ε=0

+ J(x)δaφ(x)

)
= 0,

(2.76)

where J a
µ coincides with the classically conserved Noether current,

J a
µ (x) ≡

δL(φ+ εaδaφ)

δ∂µεa(x)

∣∣∣∣
ε=0

. (2.77)
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The n-th functional derivatives with respect to the external sources, J , of the
functional in eq. (2.76) give relations between the correlation functions of the following
type:

∂

∂xµ
〈φ(x1)φ(x2)...φ(xn)J a

µ (x)〉 = 〈φ(x1)φ(x2)...φ(xn)
δL

δεa(x)

∣∣∣∣
ε=0

〉

−
∑

i

δ(xi − x)〈φ(x1)..δaφ(xi)..φ(xn)〉, (2.78)

where the second term on the right are contact terms which vanish if x .= x1, ..., xn.
For more details on the derivation of these identities see for example (Collins, 1984).

2.6 Perturbation Theory in the Functional Formalism

Correlation functions in the interacting case, i.e. for

V (φ) =
1

2
m2

0φ
2 +

λ

4!
φ4 (2.79)

can be obtained by perturbing in λ. We just need to separate the free and interacting
parts of the classical action:

S[φ] = S(0)[φ] + S(1)[φ], (2.80)

with

S(0)[φ] ≡
∫

d4x

{
1

2

[
(∂µφ(x))

2 +m2
0φ

2
]}

, S(1)[φ] =

∫
d4x

λ

4!
φ4. (2.81)

The generating functional can therefore be Taylor-expanded in the coupling constant,
λ:

Z[J ] =
〈e
∫

d4xJ(x)φ(x)e−S(1)[φ]〉0
〈e−S(1)[φ]〉0

≡
∫
Dφe−S(0)[φ]+

∫
d4xJ(x)φ(x)∑

n
1
n!

(
−S(1)[φ]

)n
∫
Dφe−S(0)[φ]

∑
n

1
n!

(
−S(1)[φ]

)n , (2.82)

where 〈〉0 is the average with respect to the unperturbed theory and therefore can be
evaluated in terms of the free generating functional of eq. (2.65). The n-th Schwinger
function is given by

Sn =
〈φ(x1)φ(x2)...φ(xn)e−S(1)[φ]〉0

〈e−S(1)[φ]〉0
, (2.83)

and a similar Taylor expansion in λ allows to compute Sn in terms of free correlation
functions. Three observations are in order:
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• Wick’s theorem holds. All contributions can be obtained from functional deriva-
tives of the free path integral, Z(0)[J ], evaluated at J = 0. Therefore Wick’s
theorem is reproduced because Z(0)[J ] is quadratic in the currents and therefore
the fields have to be paired up in propagators to give a non-vanishing contribution:

〈φ(x1)φ(x2)....φ(x2n)〉0 =
∑

perm

〈φ(x1)φ(x2)〉0....〈φ(x2n−1)φ(x2n)〉0. (2.84)

Correlation functions are therefore obtained from products of propagators.
• The denominator in eq. (2.83) ensures that all contributions with disconnected
parts that do not contain any external leg cancel (i.e. vacuum polarization dia-
grams).

• For each insertion of S(1)[φ] there is an integration over space-time that can give
rise to ultraviolet divergences (UV).

A similar perturbative expansion can be trivially defined for the generating func-
tionals of connected and 1PI diagrams.

2.7 Perturbative renormalizability

In order to ensure the UV finiteness of the perturbative contributions, it is sufficient
to consider the 1PI diagrams, where the propagators attached to the external legs are
amputated. Let us consider a general diagram of an N -th 1PI correlation function in
momentum space for the scalar theory, eq. (2.79). The contribution of a diagram with
I internal lines (i.e. propagators linking two vertices) and L loops is generically of the
form:

Γ(N)(p1, ..., pN ) ∼
∫ L∏

l=1

d4ql

I∏

i=1

1

ki(ql, pj)2 +m2
, (2.85)

where the ql stand for the L loop momenta, pj for the N external momenta and ki are
the momenta of the I internal lines, that can in general be writen as linear combinations
of the external and loop momenta. The loop momentum integrals give rise to UV
divergences. If these integrals are cutoff at some scale Λ, the diagram behaves as ∼ Λω

when Λ is scaled to ∞, where ω is the power of the leading divergence, also called the
superficial degree of divergence. Scaling the loop momenta with Λ in eq. (2.85), the
following relation follows:

ω ≡ 4L− 2I. (2.86)

ω must therefore be negative for the diagram to be finite, although this condition is
not sufficient to ensure finiteness.

There is a topological relation between I, the number of vertices V and external
legs N of the diagram:

2I +N = 4V, (2.87)

since each vertex involves four fields and each leg is either external or linked to another
internal line.
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Finally the number of loops, L, is related to V and N . Each propagator involves an
integral over momentum, eq. (2.67). Each vertex involves an integration over space-
time, giving rise to δ(

∑
i pi), where the sum is over all momenta attached to the vertex.

One of these deltas corresponds to the conservation of the external momenta, while
the others allow to reduce V − 1 of the loop integrations. Therefore the number of
loops of the diagram satisfies, using eq. (2.87),

L = I − V + 1 = V −N/2 + 1, (2.88)

and substituting eqs. (2.87) and (2.88) in eq. (2.86) we find

ω = 4−N. (2.89)

ω does not depend on the number of loops or vertices. It is fixed by the number of
external legs. Only 1PI diagrams with N = 2, 4 might have a non-negative degree of
divergence. It can be shown that the UV divergences in these diagrams give contribu-
tions to the vertex functions of the form

δΓ(2)[Φ] = A∂µΦ∂µΦ+BΦ2 (2.90)

δΓ(4)[Φ] = CΦ4, (2.91)

where A,B,C are divergent, but since they have the same structure as the terms
already present in the Lagrangian, they can be reabsorbed in a redefinition of m2

0, λ
and the normalization of the field itself. For this reason, we say that this theory is
perturbatively renormalizable.

More generically, we can consider a theory where S(1) has other interactions such
as

S(1)[φ] =
λ

4!
φ4 +

λ′

6!
φ6 + ... (2.92)

while λ has no mass dimension, the additional couplings in general do, e.g. [λ′] = −2.
Let us consider more generally a vertex with N∂ derivatives and Nφ fields. The

corresponding coupling, gV , must have mass dimension

[gV ] = 4−Nφ −N∂. (2.93)

We can repeat the power-counting exercise above to evaluate the superficial degree of
divergence of a vertex function that contains V vertices of this type and we find that
the relations eqs. (2.87), (2.88) are modified to

ω = 4L− 2I +N∂V 2I +N = NφV L = I − V + 1, (2.94)

and therefore

ω = 4−N − [gV ]V. (2.95)

We find a very different behaviour as the order of the perturbative expansion grows
depending on the sign of [gV ]:
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[gV ] > 0 diagrams become less divergent with V : superrenormalizable theory
[gV ] = 0 the divergence does not depend on V : renormalizable theory
[gV ] < 0 divergences for larger N as V grows: non-renormalizable theory

Even if one considers only renormalizable theories, the proof of perturbative renor-
malizability is rather involved, because a diagram with ω < 0 does not have to be
finite. In general there are subdivergences (that is divergences that show up when a
subset of all the internal momenta are scaled with Λ). The proof of renormalizability
in the continuum takes therefore the following steps:

• Prove a power counting theorem to characterize divergent and finite diagrams
• Recursive procedure to subtract subdivergences: e.g. in the BPHZ (Bogoliubov
and Parasiuk, 1957; Hepp, 1966; Zimmermann, 1969) subtraction scheme, the
superficial degree of divergence of a diagram is reduced by subtracting the Taylor
expansion of the diagram in the external momenta up to order equal the degree of
the polynomial. A forest formula establishes the recursive procedure to subtract
subdivergences.

• All-orders proof

The conclusions to all orders in perturbation theory are the same as those based on the
superficial degree of divergence. For more details about perturbative renormalizability
we refer to P. Weisz’s lectures (Weisz, 2009).

2.8 Wilsonian renormalization group

The old concept of renormalizability which looked like a sacred requirement of any sen-
sible quantum field theory is now updated. Thanks to Wilson and others we know now
that there is nothing special about a bare Lagrangian that is renormalizable. In fact
the consequence of the point of view of assuming the existence of a fundamental cutoff
(such as the one existing in a theory defined on the lattice) is that renormalizability
is an emergent effective phenomenon. If such a theory describes correlations that tend
to infinity in units of the cutoff, it can be accurately represented by a renormalizable
theory, as long as we are interested in describing physics at scales of the order of this
long correlation length. For a classical reference see (Wilson and Kogut, 1974) and
references therein.

2.8.1 Renormalization group transformations

K. Wilson studied the connection of renormalizability and critical phenomena via his
celebrated renormalization group transformations. Let us assume that we have a real
cutoff, such as a space-time lattice spacing a = Λ−1, as we will see later. Taking the
continuum limit a → 0 is therefore like taking the cutoff to infinity, and the hope is
that a finite limit exists, in which physical scales stay finite and therefore

mphysa → 0. (2.96)

Seen as a statistical system this implies that the correlation length (rate of the expo-
nential decay of the two-point correlator), ξ ∼ m−1

phys, goes to infinity in units of the
lattice spacing
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ξ/a → ∞, (2.97)

and this is what we call in statistical mechanics a critical point. The continuum limit
of a QFT must therefore be a critical point.

It is an empirical fact that many systems near critical points behave in similar
ways, this is what is called universality (the long range properties of many systems do
not depend on the details of the microscopic interactions). It was the contribution of
Wilson and others that established the link

Universality in critical statistical systems ↔ Renormalizability in QFT

Both phenomena can be understood in terms of fixed-points of the renormalization
group.

Let us suppose that we have a lattice scalar theory on a lattice of spacing a which
describes physics scales m 0 a−1. The most general theory that is local can be written
as

S(a) =
∑

α

gα(a)
∑

x

Oα(φ(x)), (2.98)

where Oα are local operators (of the field and its derivatives) with arbitrary dimension
that respect the lattice symmetries. This is a very complicated system with many
coupled degrees of freedom, however if we are interested only in the long-distance
properties, many of the degrees of freedom (those at short distance or large momenta)
induce effects that can be absorbed in a change in the couplings gα, as we will see.

In order to understand what happens when we take the limit a → 0 keeping the
physical scale fixed, we can follow Wilson’s recipe and do it in little steps. We consider
a series of lattice spacings that decrease by a factor 1− ε at a time:

a ≥ a1 ≥ a2... ≥ an = (1− ε)na, ε0 1. (2.99)

We want to compare the actions defined in the series of lattices and we do this by
defining, at each step n, an effective action at the original scale a at each step S(n)(a).
This action is obtained from the n-th action at the scale an, after integrating out
recursively the extra degrees of freedom that appear at each step. These are short-
ranged (momentum scales between a−1

n−1 and a−1
n ), and therefore result in a local

action, which must then have the same generic form of eq. (2.98), but with different
couplings in general:

S(n)(a) =
∑

α

g(n)α (a)
∑

x

Oα(φ(x)). (2.100)

We call a renormalization group (RG) transformation, the function that defines
the change in the couplings:

Rα : g(n)α → g(n+1)
α g(n+1)

α = Rα(g
(n)). (2.101)

Obviously we can make this transformation a continuous one and then we talk about
the RG flow of the coupling constants. While the couplings change we are changing
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the physics obviously, but if we perform sufficiently many transformations we can hit
a fixed-point if it exists. A fixed-point corresponds to some point in coupling space g∗α
such that

Rα(g
∗) = g∗α. (2.102)

It is at these points that physics would no longer change as we move towards the
continuum limit, since the action remains unchanged. The fixed-points are therefore
critical points:

lim
n→∞

mphys(g
∗)an → 0, (2.103)

unless the physical critical mass diverges, which would be uninteresting for a QFT.
Now it turns out that such fixed-points, if they exist, are rather universal, because

they can be approached by tuning just a few parameters , called relevant couplings. A
priori, one could imagine having to tune all the couplings α = 1, ..,∞ to reach a given
fixed-point, but this is usually not the case and this is the essence of renormalizability
and universality. Near a fixed-point the evolution of the couplings reads at linear order

g(n+1)
α − g∗α =

∑

β

∂Rα
∂gβ

∣∣∣∣∣∣
g∗

(g(n)β − g∗β), (2.104)

so the distance to the fixed-point ∆g(n) changes according to the following equation:

∆g(n+1)
α =

∑

β

Mαβ∆g(n)β , Mαβ ≡
∂Rα
∂gβ

∣∣∣∣
g∗

. (2.105)

We can find different situations depending on the eigenvalues, λ, of the matrix M :

λ > 1 ∆g(n)α increases as n → ∞ α is a relevant direction

λ = 1 ∆g(n)α stays the same as n → ∞ α is a marginal direction

λ < 1 ∆g(n)α decreases as n → ∞ α is an irrelevant direction

In the first case the distance to the fixed point grows in the corresponding direction,
these are relevant couplings that would need to be tuned. In the third case, the distance
to the fixed-point decreases and these are irrelevant couplings. In the second case,
the couplings are called marginal and might need tuning or not depending on subtle
quantum effects that always make λ slightly different from one. The fact that the
number of relevant directions is finite and usually small is behind the two related
properties: universality of the fixed-point and the renormalizability of QFT.

Gaussian Fixed Point. We will make this discussion a bit more explicit by considering
the Gaussian fixed-point of scalar theories. First we note that the free massless point
of a scalar theory is a fixed-point. Consider the action

S(a) =

∫

BZ(a)

d4p

(2π)4
1

2
φ(−p)p2φ(p), (2.106)

where BZ(a) is the Brillouin zone [−π/a,π/a] in each momentum direction.
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When we do the first RG transformation we start with the same action but in a
lattice of spacing a1 = (1− ε)a. Since the fields at different momenta are independent
variables, we can integrate over those at momenta π/a ≤ |pµ| ≤ π/a1 so that the
partition function:

Z(1) =

∫ ∏

p∈BZ(a1)

dφ(p)e
−
∫
BZ(a1)

d4p

(2π)4
1
2φ(−p)p2φ(p)

(2.107)

= C

∫ ∏

p∈BZ(a)

dφ(p)e
−
∫
BZ(a)

d4p

(2π)4
1
2φ(−p)p2φ(p)

. (2.108)

where C is some constant that comes from the integration of the momentum modes of
BZ(a1) that lay out of BZ(a). The effective action after integrating the high frequency
modes up to scale a−1 is therefore S(1)(a) = S(a). The original action is a fixed-point
of the renormalization group. Note that since there is no mass term, it is also a critical
point, as expected.

Now we can see why the gaussian fixed-point is the one responsible for the renor-
malizability of λφ4. We start with an arbitrary lattice action that is quadratic in the
fields, but including all terms that have the lattice symmetries.

S(a) =

∫

BZ(a)

d4p

(2π)4
1

2
φ(−p)

(
p2 +

1

a2
m2

0 + g1a
2p4 + ...

)
φ(p) (2.109)

where we have expressed all the couplings in units of the lattice spacing to make them
dimensionless:

[m0] = [α] = ... = 0. (2.110)

This action is also diagonal in momentum space and therefore the integration over
the momentum modes in a slice of momenta in BZ(a1) and out of BZ(a) can be
done as before so the action for the modes up to a−1 is the same, but erasing the
high-momentum modes, ie:

S(1)(a) =

∫

BZ(a)

d4p

(2π)4
1

2
φ(−p)

(
p2 +

1

a2

(
a

a1

)2

m2
0 + g1a

2
(a1
a

)2
p4 + ...

)
φ(p),

(2.111)

therefore the action is no longer a fixed-point, because all the couplings except the
kinetic term have changed:




m(1)

0

2

g(1)1
...



 = M




m2

0

g1
...



 , M = diag
(
(1− ε)−2, (1− ε)2, ...

)
, (2.112)

The only eigenvalue of M which is above one is the first one, therefore there is one
relevant direction, that of m2

0 and all the rest are irrelevant. After a large number of
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RG transformations (as we approach the continuum limit) these directions disappear.
On the other hand, m2

0 which fixes the physical mass gap grows, therefore it needs to
be tuned to remain finite in the continuum limit. Therefore the continuum limit of this
theory, even if it has non-renormalizable terms should correspond to a free massive
renormalizable scalar QFT.

Finally in the fully interacting case, the situation is more complicated, but still near
the gaussian fixed-point (sufficiently small couplings) the continuum limit corresponds
to a renormalizable scalar field theory. In this case the action contains all terms,
including interactions

S(a) =
∑

x

∂µφ∂µφ+
1

2a2
m2

0φ
2 +

λ

4!
φ4 +

λ′

6!
φ6 + g1a

2φ∂4φ+ ....

(2.113)

Now the integration over the momentum shell π/a ≤ |pµ| ≤ π/a1 cannot be done
analytically. But for sufficiently small couplings it can be done in perturbation theory,
see for example (Peskin and Schroeder, 1995). It gives

S(1)(a) =
∑

x

Z(1)∂µφ∂µφ+
1

2a2
m(1)

0

2
φ2 +

λ(1)

4!
φ4 + a2

λ′(1)

6!
φ6 + g(1)1 a2φ∂4φ+ ...,

(2.114)

where

Z(1) = 1 +O(λ2), (2.115)

and

m(1)
0

2
= (m2

0 + δm2
0)(1 − ε)−2, (2.116)

λ(1) = λ+ δλ, (2.117)

λ′(1) = (λ′ + δλ′)(1− ε)2, (2.118)

g(1)1 = (g1 + δg1)(1− ε)2. (2.119)

All δ terms depend on the couplings λ,λ′, ..., but vanish for small enough couplings.
Therefore for small enough couplings, the matrix M in this case has one relevant
direction, many irrelevant ones and just one marginal. It is for this marginal direction
that the value of δλ, even if small, is important since it determines the fate of this
direction. At lowest order of perturbation theory it is

δλ =
3λ2

16π2
ln(1 − ε) < 0, (2.120)

therefore λ(1) < λ and the direction is marginally irrelevant. The change is much slower
than for an irrelevant direction since it is only logarithmic. The continuum theory is
therefore again a massive free scalar theory, at least within this perturbative analysis.
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Summarizing Wilson’s approach to renormalization shows the following intuitive
physical picture:

QFT with a cutoff ↔ Statistical system near criticality
Renormalized QFT ↔ Statistical system at a fixed-point

This picture is of course an essential ingredient for the definition of QFT on a
lattice, because it implies that we do not have to worry about the precise definition
of S(a), the continuum limit will approach the fixed-point of the statistical system
nevertheless. We need to ensure however that the fixed-point corresponds to the QFT
we want to describe. For this we need to make sure that

• the action has the right degrees of freedom
• it is local
• has the right symmetries to flow to the desired fixed-point (for example if we break
some symmetry we might artificially increase the number of relevant directions)

Under these very general assumptions we are otherwise free to make our choice.

Exercise 1.1 Consider the 1D Ising model with an action:

S = −β
∑

x

σxσx+1 β > 0. (2.121)

where the spin variables σx = ±1. Identify the quantum operator and the transfer
operator for this model. Diagonalize the transfer operator. Compute the correlator
from this result, ie.

〈σxσy〉 = lim
N→∞

Tr[T̂N−(x−y)σ̂T̂ (x−y)σ̂]/Tr[T̂N ], (2.122)

show that the correlation length is

ξ−1 = − ln tanhβ, (2.123)

and therefore only diverges at β = ∞ (zero temperature).
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Lattice Scalar Field Theory

The definition of a scalar quantum field theory on the lattice assumes that the field
lives in a discretized space-time. The simplest choice is to consider the lattice spacing
a to be the same in all space-time directions, that is a cubic lattice:

φ(x) x = na n = (n0, n1, n2, n3) ni ∈ Z4. (3.1)

Therefore
∫

dxi → a
∑

ni∈Z

∫
d4x → a4

∑

x

≡ a4
∑

n∈Z4

. (3.2)

Canonical quantization goes through identically, the only change is that the labeling
of degrees of freedom is discrete and not continuous.

The Fourier transform therefore becomes a Fourier series. Any function defined on
a cubic lattice, F (na), has a Fourier transform which is periodic in the Brillouin zone
(BZ):

F̃ (p) = a4
∑

n

e−ipnaF (na) F̃ (p) = F̃

(
p+

2π

a
m

)
, m ∈ Z4. (3.3)

It is easy to invert the relation of eq. (3.3):

∫ π/a

−π/a

d4p

(2π)4
eipnaF̃ (p) = F (na). (3.4)

Therefore lattice four-momenta are cutoff at scale |pi| ≤ π/a and therefore the inverse
lattice spacing, a−1, is also an energy cutoff, i.e. the theory is regularized.

A very useful formula is Poisson’s summation formula:
∑

n∈Z4

einz = (2π)4
∑

n∈Z4

δ(z − 2πn) ≡ (2π)4δP (z). (3.5)

The functional approach to quantization in Euclidean space-time involves the par-
tition function.

Z =

∫
Dφ e−S[φ], Dφ→

∏

x

dφ(x), (3.6)

and S[φ] is some discretized version of the action of eq. (2.58), which is not unique.
According to Wilson’s RG all actions should be equivalent in the continuum limit
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provided they satisfy the same symmetries (in this case φ↔ −φ). The simplest choice
is:

S[φ] → a4
∑

x

{
1

2
∂̂µφ(x)∂̂µφ(x) +

1

2
m2

0φ(x)
2 +

λ

4!
φ(x)4

}
, (3.7)

where we have defined the forward lattice derivative

∂̂µφ(x) ≡
1

a
(φ(x + µ̂a)− φ(x)) . (3.8)

We can also define a backward derivative

∂̂∗µφ(x) ≡
1

a
(φ(x) − φ(x − µ̂a)) . (3.9)

As in the continuum we can obtain the correlation functions from the generating
functional

Z[J ] ≡
∫ ∏

x

dφ(x)e−S[φ]+a4
∑

x
J(x)φ(x)/Z. (3.10)

3.1 Free lattice scalar theory

As in the continuum, it is easy to solve the lattice theory in the free case, that is for
λ = 0. We can rewrite the action as

S(0)[φ] = a4
∑

x

{
1

2
∂̂µφ∂̂µφ+

m2
0

2
φ2
}

=
a4

2

∑

x,y

φ(x)Kxyφ(y), (3.11)

with

Kxy ≡ −
1

a2

3∑

µ̂=0

(δx+aµ̂y + δx−aµ̂y − 2δxy) +m2
0δxy. (3.12)

The corresponding generating functional is

Z(0)[J ] = e
a4

2

∑
x,y

Jx(K
−1)xyJy det

(
a4K

)−1
, (3.13)

where we have used a4
∑

y KxyK−1
yz = δxz.

We can then compute the propagator:

〈φ(x)φ(y)〉0 =
1

a8
∂Z(0)[J ]

∂Jx∂Jy

∣∣∣∣
J=0

=
1

a4
K−1

xy . (3.14)

To get a more familiar expression we go to Fourier space. Using Poisson’s formula
eq. (3.5), after some easy manipulations we find

K̃pq = a8
∑

xy

e−ipxe−iqyKxy = a4(2π)4δP (p+ q)

{
m2

0 +
2

a2

∑

µ

(1 − cos pµa)

}
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= a4(2π)4δP (p+ q)

{
m2

0 +
∑

µ

p̂2µ

}
, (3.15)

where

p̂µ ≡
2

a
sin
(pµa

2

)
p̂2 ≡

∑

µ

p̂2µ. (3.16)

Therefore

Kxy = a4
∫

d4p

(2π)4
eip·(x−y)

(
p̂2 +m2

0

)
. (3.17)

It is easy to see that the inverse is

〈φ(x)φ(y)〉 = a−4K−1
xy =

∫
d4p

(2π)4
eip·(x−y)

p̂2 +m2
0

. (3.18)

Since in the free theory all correlation functions are products of propagators, this is
enough to construct all correlation functions.

It is instructive to understand in this very simple context two important questions:

• what is the particle interpretation ?
• what happens in the continuum limit ?

According to the discussion in section 2.3.1, the spectral representation of the
propagator at large times provides a direct link between the Euclidean formulation
and the particle interpretation. Indeed we can identify the one-particle asymptotic
states from the Källen-Lehmann spectral representation of the propagator, eq.(2.23):

lim
x0→+∞

〈φ(x)φ(0)〉 =
∑

α

∫
d3p

(2π)32Ep(α)
|〈0|φ̂(0)|α(0)〉|2e−Ep(α)x0eip·x, (3.19)

with Ep(α) =
√
m2
α + p2.

Starting with the free propagator, eq. (3.18), we can perform the integral over
p0 ∈

[
−π

a ,
π
a

]
(contour A) using the residuum theorem (see Fig. 3.1): We consider the

closed contour including the interval A , the contour B
[
π
a ,

π
a + i∞

]
, the contour C[

π
a + i∞,−π

a + i∞
]
and the contour D

[
−π

a + i∞,−π
a

]
. We have then

∫

A
(...) +

∫

B
(...) +

∫

C
(...) +

∫

D
(...) = 2πi

∑

poles

Residues. (3.20)

By periodicity of the function in the BZ, we have

∫

B
(...) +

∫

D
(...) = 0, (3.21)
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Fig. 3.1

while for x0 > 0, the integral over C vanishes,
∫
C(...) = 0. Therefore we end up with

the relation
∫

A
(...) = 2πi

∑

poles

Residues. (3.22)

Single poles occur at the solutions of the equation:

p̂2 +m2 = 0 ⇒ p0 = ±iω(p)

(
mod

2π

a

)
, (3.23)

which are purely complex in the BZ. ω(p) is a real number satisfying:

coshω(p)a = 1 +
a2

2

(
m2

0 +
4

a2

3∑

i=1

sin2
pia

2

)
. (3.24)

There is only one pole within the closed contour, p0 = +iω(p) with residue

Residue[p0 = +iω(p)] =
1

2ω̄(p)
, ω̄(p) ≡

1

a
sinh (ω(p)a) (3.25)

and therefore

〈φ(x)φ(0)〉 =
∫

A
(...) =

1

2ω̄(k)
e−ω(k)x0eik·x. (3.26)

We indeed recover the expected behaviour if we identify the one-particle energies
Ep(α) → ω(p), while the matrix elements
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|〈0|φ̂(0)|α〉| →

√
ω(p)

ω̄(p)
. (3.27)

Had we started with the canonical quantization of the free lattice scalar field we would
have arrived at the same result.

The continuum limit a → 0 can be readily obtained:

lim
a→0

ω(p) = lim
a→0

ω̄(p) =
√
m2

0 + p2 +O(a2), (3.28)

as expected.

Exercise 2.1 Show that the free scalar Euclidean propagator in a periodic box of
extent T and L is given by

〈φ(x)φ(0)〉 = L−3
∑

p

cosh
[
Ep(

T
2 − x0)

]

2Ep sinh
(
T
2Ep

) , Ep =
√
p2 +m2 (3.29)

Use:

∞∑

n=1

cosnx

n2 + α2
= −

1

2α2
+

π

2α

cosh (α(π − x))

sinh(απ)
, 0 ≤ x ≤ 2π. (3.30)

Show that in the infinite volume limit, the correct KL representation is obtained.

3.2 Interacting lattice scalar theory

When λ .= 0 the theory cannot be solved analytically, however one can rigorously
prove the fundamental property of unitarity or the existence and uniqueness of the
Hilbert space representation. This can be done by the following steps:

• Identification of a transfer operator T̂ and field operator φ̂ such that

〈φ(x1)...φ(xn)〉 = lim
T→∞

Tr
[
T̂ (T/2−x0

1)/aφ̂(0,x1)T̂ (x0
1−x0

2)/aφ̂(0,x2)...T̂ (T/2+x0
n)/a

]

Tr[T̂ T/a]
.

(3.31)

In general, it takes some guesswork to identify the transfer operator. In this case,
it is easy to see that it may be chosen as that of eq. (2.52) by simply substituting
the continuum derivatives by the discrete ones, and the integrals over space by
sums.
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• Prove that T̂ is strictly positive (see exercise). For any |Ψ〉:

〈Ψ|T̂ |Ψ〉 > 0, 〈Ψ|Ψ〉 = 1. (3.32)

• Prove that T̂ and φ̂ are unique (up to unitary transformations). This is the content
of the reconstruction theorem (Streater and Wightman, 1964).

All these conditions imply that the quantum Hamiltonian Ĥ ≡ − 1
a ln T̂ is self-adjoint

and unique.

Alternatively one can invoke the Osterwalder-Schrader reflection positivity condi-
tion which ensures unitarity as a result of a property of Euclidean correlation func-
tions (i.e. without the need to identify the Hilbert space transfer operator). The time-
reflection positivity condition is the following. Let O be any product of the classical
fields at positive times:

O(x0
1, ..., x

0
n) = φ(x1)....φ(xn), x0

i > 0. (3.33)

We define the operation, θ[...] of time reflection as

θ
[
O(x0

1, ..., x
0
n)
]
= O(−x0

1, ...,−x0
n). (3.34)

If for any such polynomial it is true that

〈θ
[
O†
]
O〉 ≥ 0, (3.35)

we say that the theory has reflection positivity, which ensures (Osterwalder and
Schrader, 1973; Osterwalder and Schrader, 1975)

• positivity of the scalar product in Hilbert space
• positivity of T̂ 2, which is the operator that generates times translations by 2a and
therefore a Hermitian Hamiltonian Ĥ = − 1

2a ln T̂ 2

Exercise 2.2 Prove the unitarity of the lattice scalar model by

a) showing that the transfer matrix is a positive operator
b) showing that the lattice formulation has the property of reflection positivity.

To show this, show that the action can be written as

S = S+ + S0 + S−, (3.36)

where S0 depends only on the fields at x0 = 0, S+ on the fields at x0 > 0 and
S− on the fields at x0 < 0. Show that

θ(S+) = S−. (3.37)

Rewrite the correlation function of eq. (3.35) in a manifestly positive way.
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Table 3.1 One loop contributions to Γ(2) and Γ(4)

3.3 Lattice Perturbation Theory

Deriving the perturbative expansion and Feynman rules from the lattice theory is
completely analogous to the continuum. We treat

S(1) = a4
∑

x

λ

4!
φ(x)4, (3.38)

as a perturbation in the path integral, eq. (2.82).
The Feynman rules for this theory are just like those in the continuum with the

propagator substituted by the lattice one of eq. (3.18), while the vertex is the same:
it connects four scalar lines with strength −λ. The combinatorial factors coming from
Wick contractions are also just like in the continuum.

Let’s consider the one-loop corrections to the two and four vertex functions (Figs. 3.1):

Γ(2)(p,−p) = −(p̂2 +m2
0)−

λ

2

∫

BZ

d4k

(2π)4
1

k̂2 +m2
0

≡ −(p̂2 +m2
0)−

λ

2
I1(a,m0)

Γ(4)(p1, p2, p3, p4) = −λ+



λ
2

2

∫

BZ

d4k

(2π)4
1

(k̂2 +m2
0)

̂(k + p1 + p2)
2
+m2

0

+ perm





≡ −λ+
λ2

2
(I2(a,m0, p1 + p2) + perm.) . (3.39)

As in the previous example, all Feynman graphs satisfy the following properties in
momentum space:

• periodic functions of all momenta with periodicity 2π/a in each momentum di-
rection

• loop momenta are integrated only in the BZ and are therefore finite

On the lattice, divergences are expected when we try to approach the continuum
limit a → 0. The expectation from perturbative renormalizability is that a continuum
limit can be taken provided a tuning ofm, λ and the field normalization are performed.
It is easy to check that this is indeed the case at the one loop order.

The Γ(2) above does not have a finite continuum limit since

I1(a,m0) =

∫

BZ

d4k

(2π)4
1

k̂2 +m2
0

=
1

a2
F (m0a), (3.40)

and the function F (x) does not vanish for small x:
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F (0) =

∫ π

−π

d4k

(2π)4
1∑

µ(sin kµ/2)
2
= 0.154933... (3.41)

The first derivative is however not defined at m0a = 0, because it has a logarithmic
divergence. Isolating this divergence, we find:

I1(a,m0) =
1

a2
F (m0a) =

F (0)

a2
−m2

0

(
−

1

16π2
ln(m0a)

2 + C +O(m0a)
2

)
, (3.42)

where C = 0.030345755....
In this simple example, it is easy to show that the divergent constant of eq. (3.40)

can be reabsorbed by a redefinition of m2
0

Γ(2)(p,−p) = −(p̂2 +m2
0)−

λ

2
I1(a,m0) ≡ −(p̂2 +m2

R). (3.43)

Similarly if we consider the Γ(4) vertex function we find that the integral I2 is divergent.
If we consider the Taylor expansion with respect to external momenta, we find that
the divergence is present only in the leading term (i.e. at zero external momenta):

I2(a,m0, 0) =

∫

BZ

d4k

(2π)4
1

(k̂2 +m2
0)

2
= −

d

dm2
0

I1(a,m0)

= C −
1

16π2
(ln(m0a)

2 − 1) +O(a2), (3.44)

therefore the corresponding divergence can be reabsorbed in λ:

Γ(4)(0, 0, 0, 0) = −λ+
3λ2

2
I2(a,m0, 0) ≡ −λR. (3.45)

The renormalized quantities are therefore

m2
R = m2

0 +
λ

2

(
F (0)

a2
+

m2
0

16π2
ln(m0a)

2 − Cm2
0

)
,

λR = λ+
3λ2

2

(
−C +

1

16π2
(ln(m0a)

2 + 1)

)
. (3.46)

This way of redefining the renormalized couplings corresponds to the usual mass-shell
scheme:

Γ(2)(0, 0) = −m2
R,

dΓ(2)(p,−p)

dp2

∣∣∣∣
p=0

= 1, Γ(4)(0, 0, 0, 0) = −λR. (3.47)

That this must hold to all orders of perturbation theory requires a non-trivial theorem
known as the Reisz power counting theorem (Reisz, 1988). It is the analog of the
continuum one, and permits to carry the BPHZ recursive renormalization procedure
over to the lattice regularization. This has been discussed in P. Weisz’s lectures (Weisz,
2009).
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3.4 Callan-Symanzik equations. Beta functions.

We have already discussed the renormalization group and why approaching the con-
tinuum limit can be seen as a flow in the space of couplings. As we have seen above,
the continuum scalar theory that we are trying to describe has one relevant direction,
m0, and one marginal one λ. As we approach the continuum limit, the quantities of
eq. (3.46) must be tunned.

In the Wilsonian RG we have seen that as we approach the continuum limit, the
effective couplings change smoothly in a way that is locally determined by the effective
couplings themselves. We can therefore derive a differential equation to describe this
change. These are the famous Callan-Symanzik equations. Let us consider a fixed λ
and let us see how λR changes with a. We tune m so that mR is fixed to the physical
mass as we approach the continuum limit. Differenciating the second eq. (3.46) we find
at leading order in the perturbative expansion:

β(λR) ≡ a
dλR
da

∣∣∣∣
λ

=
3

(16π2)
λ2 +O(λ3) =

3

(16π2)
λ2R +O(λ3R). (3.48)

This is the Callan-Symanzik beta function.
This function can be computed to higher orders, for instance the two loop result is

β(λ) = β0λ
2 + β1λ

3 + ... (3.49)

and the coefficients β0 and β1 can be shown to be universal (do not depend on the
regularization scheme):

β0 =
3

16π2
, β1 = −

17

3(16π2)2
. (3.50)

The equation can be integrated to give

a = Ce−1/(β0λR)λ
−β1/β

2
0

R (1 +O(λR)) , (3.51)

where C is some integration constant that must be determined from initial conditions.
This equation shows that as we approach the continuum limit

lim
a→0

λR(a)
∣∣∣
λ
∼ lim

a→0

1

ln a
= 0, (3.52)

so the continuum theory has a vanishing renormalized coupling, i.e. it is trivial. Un-
fortunately this argument is not a sufficient proof of triviality, because it is based on
perturbation theory. The question is of course if one could use the lattice formulation
to go beyond.

3.5 Triviality in lattice λφ4 (and in the SM)

The Higgs sector of the Standard Model is a multicomponent λφ4 theory, with a con-
tinuous global symmetry that is spontaneously broken. The β function of the bare
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coupling, λ, has the same properties as in the single scalar case: the renormalized cou-
pling decreases as we approach the continuum limit at fixed bare coupling. Therefore
one should worry that actually this theory cannot be defined without a cutoff, or if
one does then it is a trivial theory λR = 0, which would not be in agreement with
phenomenology. In particular the Higgs mass is related to the renormalized coupling
in the following way:

m2
H

v2
=
λR
3
. (3.53)

Therefore taking the cutoff to ∞ would imply in particular a massless Higgs.
If we do not remove the cutoff, we can try to maximize the value of λR modifying

λ in all its possible range: λ ∈ [0,∞). For example, we could lower the cutoff as much
as possible:

Λ

mH
≥ 2, (3.54)

so that the cutoff is higher than two times the Higgs mass (otherwise the SM would
not make sense not even as an effective theory). Such a condition implies an upper
bound on λR:

λR ≤ λmax
R , (3.55)

and therefore an upper bound to the Higgs mass, according to eq. (3.53).
This problem has a very definite answer in the lattice regularization and it was

studied extensively in the late eighties. The picture that emerged from numerical
studies as well as analytically is that indeed the only IR fixed-point in the discretized
scalar theories is the trivial one and the theory is trivial in the continuum limit.

The method followed by Lüscher-Weisz (Lüscher and Weisz, 1988; Lüscher and
Weisz, 1989) can be summarized as follows. The (m0,λ) space can be mapped to the
(κ, λ̄) space, where the original lattice action is written as

S = a4
∑

x

[
φ(x)2 + λ̄(φ(x)2 − 1)2 − κ

∑

µ

(φ(x)φ(x + µ̂) + φ(x)φ(x − µ̂))

]
,(3.56)

after the change of variables

φ(x) →
√
2κφ(x) a2m2

0 →
1− 2λ̄

κ
− 8 λ→

6λ̄

κ2
. (3.57)

There is a critical line κc(λ̄), where the mass vanishes, where the continuum limit
should lie. For values of κ sufficiently far from this line, the so-called hopping parameter
expansion (or high temperature expansion), a Taylor series in κ, is convergent. The
strategy to study the triviality of the theory follows the following steps:

• Use the hopping parameter expansion or high temperature expansion to compute
mR and λR (as defined by some renormalization prescription such as the onshell
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one, defined above) in a region of κ not too close to κc. The fact that the series
has been computed to very high order, allows to control very well the truncation
error for values of λR that are already in the perturbative domain

mRa =
1√
κ

∑

n

αn(λ̄)κ
n,

λR =
∑

n

βn(λ̄)κ
n. (3.58)

For mRa ∼ 0.5, we are sufficiently far from the critical line to have an accurate
description, while λR is rather small. Note that if mRa ≥ 0.5 means the cutoff is
of the order of the mass.

• Solve the perturbative Callan-Symanzik equations for the renormalized coupling
in order to approach the critical line with initial conditions given by the results
of the hopping expansion. Since the initial λR is small enough and it gets smaller
as we approach the continuum limit, the procedure is under control.

In this way, Lüscher-Weisz could map the lines of constant (mR,λR) as the cutoff
changes. As mRa decreases along these lines, we get closer to λ̄ = ∞, which is the
furthest we can get, so one can read the bound on λR by considering this value of
the bare coupling. The result can be plotted in the renormalized plane (mRa)−1 vs
mR/vR at λ̄ = ∞ as shown in Figure 3.2. At mRa ∼ 0.5 we can read the value of
mR/vR, resulting in the limit (Lüscher and Weisz, 1988)

mH ≤ 630GeV, (3.59)

for the O(4) model. These results agree with the numerical studies e.g. (Montvay,
Münster and Wolff, 1988; Hasenfratz et al., 1987), therefore the issue is settled, to the
extent that neglecting fermion and gauge field effects in the SM is a good approxima-
tion. For a review of the triviality problem see (Callaway, 1988).
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Fig. 3.2 Value of mRa as a function of mR/v in the O(4) scalar model as obtained by

Lüscher and Weisz (Lüscher and Weisz, 1988).
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Free fermions on the lattice

The Fock space of fermions can be reconstructed from the vacuum acting with cre-
ation and annihilation operators âk and â†k, satisfying the following canonical anti-
commutation relations

{âk, âl} = {â†k, â
†
l } = 0, {âk, â†l } = δkl. (4.1)

An arbitrary normalized state |ψ〉 can be written

|ψ〉 =
∑

p

1

p!
ψk1,...kp â

†
k1
....â†kp

|0〉. (4.2)

In the functional formalism (Berezin, 1966), the fermion classical fields are elements
of a Grassmann algebra. The generators are a set of anticommuting variables c1, ...cn
and c̄1, ...c̄n, with the following anticommutation properties:

{ci, cj} = {ci, c̄j} = {c̄i, c̄j} = 0, (4.3)

which imply that cni = 0, n ≥ 2. The elements of the algebra are elements of the form

Xn1,...,nn,m1,...,mn = cn1
1 ....c̄mn

n , ni,mi ∈ {0, 1} . (4.4)

Any function of the Grassmann variables can be represented by a series expansion:

f(c, c̄) =
∑

ni,mi

fn1....mnXn1,...mn . (4.5)

We can define the integral over all Grassmann variables as:
∫

dc̄ dc f(c, c̄) = f111...1. (4.6)

Note that this implies in particular
∫

dci = 0,

∫
dcici = 1. (4.7)

In defining the partition function for fermions we will find integrals of the form

ZF ≡
∫

dc̄dc exp




−
∑

i,j

c̄iMijcj




 =
(−1)n

n!

∫
dc̄dc




∑

i;j

c̄iMijcj




n

=
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(−1)
n(n−1)

2

n!

∑

i1,...in;j1,...jn

εi1,...inεj1,...jnMi1j1 .....Minjn = (−1)
n(n−1)

2 det(M).

(4.8)

And for correlation functions involving fermions we need integrals of the form:

〈ck1 c̄l1 ....ckm c̄lm〉F ≡ ZF
−1
∫

dc̄dc ck1 c̄l1 ....ckm c̄lm exp




−
∑

i,j

c̄iMijcj






=
∑

perm

(−1)σ(perm)〈ck1 c̄l1〉F ...〈ckm c̄lm〉F , (4.9)

where each contraction is between a c and a c̄ variable

〈ckm c̄lm〉F = (M−1)kmlm . (4.10)

The Euclidean action for free Dirac fermions of mass m is given by

S[ψ, ψ̄] =

∫
d4x

1

2

[
ψ̄(x)γµ∂µψ(x) − ∂µψ̄(x)γµψ(x)

]
+mψ̄(x)ψ(x), (4.11)

where we can choose the chiral representation of the γ matrices:

γµ =

(
0 eµ
e†µ 0

)
, (4.12)

and the 2× 2 matrices are taken to be:

e0 ≡ −I, ek ≡ −iσk, (4.13)

where σk are the Pauli matrices. It is easy to check the following properties

γ†µ = γµ {γµ, γν} = 2δµν . (4.14)

We also define

γ5 = γ0γ1γ2γ3, (4.15)

satisfying

γ†5 = γ5, γ25 = 1. (4.16)

The mapping of a single Dirac fermion on the Grassmann algebra is therefore

{c1, ..., cn; c̄1, ...c̄n} → {ψα(x); ψ̄α(x)}α=1,..4
x (4.17)

The number of c and c̄ Grassmann variables to represent a general fermion is therefore
4×Nflavour ×Ncolor× space-time points. The partition function is
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ZF =

∫
dψ̄dψe−S[ψ,ψ̄]. (4.18)

As in the scalar theory, the propagator of the theory gives us information on the
one-particle asymptotic states of the theory via the Källen-Lehmann representation of
the propagator. At large Euclidean time, the fermion propagator should behave as

〈0|ψ(x)ψ̄(0)|0〉F
∣∣
x0>0

=
∑

α

∫
d3p

(2π)3
Z2
α

iγµpµ −m

2ip0

∣∣∣∣
p0=i

√
m2

α+p2

e−Ep(α)x0eipx,

(4.19)

with Ep(α) =
√
m2
α + p2. This is the KL representation for fermions that can be

derived analogously to the scalar case.

4.1 Naive fermions

Let us now try to discretize the Euclidean action in the same way we did for the scalar
fields. The fields are now defined at the lattice points only and the derivatives are
substituted by their discrete versions. We find therefore the so-called naive fermion
action:

S[ψ, ψ̄] = a4
∑

x,α,µ

ψ̄α(x)

[
1

2
(∂̂µ + ∂̂∗µ) +m

]
ψα(x) = a4

∑

x,y

ψ̄α(x)K
αβ
xy ψβ(y),(4.20)

where

Kαβ
xy ≡

∑

µ

1

2a
(γµ)αβ (δyx+aµ̂ − δyx−aµ̂) +mδαβδxy. (4.21)

We can understand the particle interpretation of this theory by studying the Källen-
Lehmann representation of the propagator. According to the Grassmann integration
rules, it is given by

〈ψα(x)ψ̄β(y)〉F =
1

a4
(
K−1

)αβ
xy

. (4.22)

The propagator can be easily computed in momentum space:

Kαβ
pq = a4

[
∑

µ

i

a
γµ sin(qµa) +m

]

αβ

(2π)4δP (p+ q), (4.23)

so that

〈ψα(x)ψ̄β(y)〉F =

∫

BZ

d4p

(2π)4
eip(x−y)

∑
µ iγµ

sin(pµa)
a +m

. (4.24)

As we did in the case of the scalar field, we first perform the integration over p0.
We deform the integration into the complex plane depicted in Fig. 3.1. The integral
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can then be written as a sum of residues of single poles in the band |Re p0| ≤ π/a and
Imp0 ≥ 0. Contrary to the scalar case, we find two poles in this region, satisfying:

eip0a = ±e−ωpa ≡ ±
(√

1 +M2
p −Mp

)
(4.25)

with

M2
p ≡ m2a2 +

3∑

k=1

sin(pka)
2. (4.26)

The integral can be easily performed and gives:

〈ψα(x)ψ̄β(0)〉F =

∫
d3p

(2π)3
eipxe−ωpx0

sinh(2 ωpa)

[(
γ0 sinhωpa− i

∑

k

γk sin pka+ma

)

+ (−1)x0/a

(
−γ0 sinhωpa− i

∑

k

γk sin pka+ma

)]
. (4.27)

Two new features appear with respect to the scalar case:

• there are two terms in the sum with the same energy, ωp, but different residue

• the energy, ωp, as a function of the spatial momenta in one direction (the others
are set to zero) is shown in Fig. 4.1. There are two different minima in the BZ
(the one at −π is the same as that at π by periodicity). More generically, we find
23 minima at

pk = p̄k ≡ nk
π

a
nk = 0, 1. (4.28)

!Π
!
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2
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2
Π

p
x
a
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m

Fig. 4.1 ωp as a function of pxa for py = pz = 0.
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As we approach the continuum limit:

lim
a→0

ωp|pk=nkπ/a
= m. (4.29)

Therefore the minima correspond to the same energy.

Near the continuum limit, it is justified to consider the contribution near these mo-
menta, so let us consider the expansion around them:

pj = p̄(i)j + kj , kja 0 1, (4.30)

where j = 1, ..., 23. It is easy to see that

sinh 2ωpa & ak0 +O(a2) sinhωpa & ak0 +O(a2),

sin pja & cos(p̄(i)a)kja+O(a2), k0 ≡
√
m2 + k2 (4.31)

Putting it all together

8∑

i=1

eip
(i)x

∫
d3k

(2π)3
eikxe−ωpt

2k0







γ0k0 − i
∑

j

γj cos(p̄
(i)
j a)kj +m





+ (−1)t/a



−γ0k0 − i
∑

j

cos(p̄(i)j a)γjkj +m









=
16∑

α=1

eip̄
(α)x

∫
d3k

(2π)3
eikxe−ωpt

2k0



γ0 cos(p̄(α)0 a)k0 − i
∑

j

γj cos(p̄
(α)
j a)kj +m



 ,

(4.32)

where we have used the fact that the second term can be written in the same form as
the first, corresponding to a different temporal momenta p̄0 = π/a. The 16 terms now
correspond to

p̄µ = (n0, n1, n2, n3)
π

a
, nµ = 0, 1. (4.33)

We can find unitarity operators Sa such that

SαγµS
†
α = γµ cos(p̄

(α)
µ a). (4.34)

For example

Sα =
∏

µ

(iγµγ5)
n(α)
µ , (4.35)

satisfies this property. Therefore we can write the continuum limit as

16∑

α=1

eip̄
(α)x

∫
d3k

(2π)3
eikxe−ωpt

2k0
Sα

[(
γ0k0 − i

∑

k

γkkk +m

)]
S−1
α . (4.36)

We can now recognize in each term the contribution of a relativistic fermion in the
continuum, eqs. (4.19), since Sα is just a similarity transformation: an equivalent
representation of the γ matrices.
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Summarizing, we have found that the continuum limit contains 16 relativistic free
fermions instead of 1. This is the famous doubling problem (Wilson, 1975; Susskind,
1977).

4.2 Doubling and chiral symmetry

There is a deep connection between the doubling problem and the difficulty to regu-
larize chirality (Nielsen and Ninomiya, 1981).

It is well-known that in the absence of a mass term, the free fermion action has a
global symmetry under chiral rotations:

ψ(x) → eiαγ5ψ(x). (4.37)

The naive discretization we just considered also has an exact global symmetry of this
form. The invariance under chiral rotations implies that the Dirac spinor representation
is actually reducible to its chiral components. Therefore in the continuum we can
consider a free Weyl fermion as the left or right chiral component that we can define
by applying a projector on the Dirac field

ψL ≡
1− γ5

2
ψ, ψR ≡

1 + γ5
2

ψ. (4.38)

Let us see what happens with the doublers when we naively discretize the action for
a Weyl fermion. The naive propagator, eq. (4.24), is (for m = 0):

〈ψL(x)ψ̄L(0)〉F =

∫

BZ

d4p

(2π)4
eipx

ia−1γµ sin pµa

(
1− γ5

2

)
=

16∑

α=1

eip̄
(α)x

∫
d3k

(2π)3
eikxe−ωpt

2k0
Sα

[(
γ0k0 − i

∑

k

γkkk

)
S−1
α

(
1− γ5

2

)

=
16∑

α=1

eip̄
(α)x

∫
d3k

(2π)3
eikxe−ωpt

2k0
Sα

[(
γ0k0 − i

∑

k

γkkk

)(
1− εaγ5

2

)]
S−1
α ,(4.39)

where εα = (−1)
∑

µ
n(α)
µ . Therefore each of the doublers contribute either a left-handed

relativistic Weyl fermion for εα = 1 or a right-handed one εα = −1 in the continuum.
It turns out that the number of right and left movers is the same!

Left : 1 + 6 + 1 = 8, (4.40)

Right :4 + 4 = 8. (4.41)

This result can be generalized to rather arbitrary forms of the fermionic action. It
is the content of the famous Nielsen-Ninomiya theorem (Nielsen and Ninomiya, 1981).
In its Euclidean version, the theorem considers actions of the form

SF = a4
∑

x,y

ψ̄(x)γµFµ(x− y)(1− γ5)ψ(y), (4.42)

satisfying the following properties:
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• Action quadratic in the fermion fields
• Invariant under lattice translations (i.e. diagonal in momentum space)
• Local (smooth Fourier transform)
• Hermitian action: Fµ(x)∗ = −Fµ(x) (implies a real Fourier transform of Fµ field)

We also assume that the function Fµ has some isolated zeros (in order to have a con-
tinuum limit). Let us call p̄α the zeros of Fµ(p). Sufficiently close we can approximate

Fµ(p) & M (α)
µν (p− p̄α)ν + ... = M (α)

µν k(α)ν + ..., (4.43)

where M (α)
µν is a real matrix that can be decomposed in general as

M (α)
µν = O(α)

µρ S
(α)
ρν , (4.44)

where Oα is an orthogonal matrix and Sα is a positive real symmetric matrix. The or-
thogonal matrix can be reabsorbed in a unitarity rotation of the fields for the following
reason. Consider a rotation in d + 1 (with d even) Euclidean space which acts in the
first d coordinates as O and in the last coordinate it multiplies by det−1 O = ±1. Such
a rotation therefore belongs to SO(d+1). The spinor representation of such rotations
are the d + 1 γ matrices: (γµ, γ5). There must exist therefore a unitary matrix that
implements the rotation in the spinor representation such that

Λ(α)γνΛ
(α)−1

= O(α)
µν γµ Λ(α)γ5Λ

(α)−1
= det−1O(α)γ5. (4.45)

Therefore we can rewrite the action as

∑

α

∫
d4k(α)

(2π)4
ψ̄(−k(α))Λ(α)γρS

(α)
ρν k(α)ν (1 − detO(α)γ5)Λ

(α)−1
ψ(k(α)). (4.46)

The real positive matrix S(α) is harmless and can be reabsorbed in a rescaling of the
momentum. However we see that there are left-movers and right-movers depending on
the sign of detO(α). A theorem by Poincaré-Hopf states that

∑
α detO

(α) is the Euler
characteristic of the manifold on which the vector Fµ(p) is defined. It is zero for the
Brillouin zone (which is topologically a four-torus). Therefore there must be as many
zeros with detO(α) = 1 as those with detO(α) = −1. In particular this implies the
number of zeros cannot be one!

Intuitively, this is a generalization of a simpler version of the theorem for one
dimensional functions: a smooth and periodic function that crosses zero must do it an
even number of times with opposite signs of the derivatives at the zeros.

Not surprisingly the easiest way to get rid of doublers is to break chiral symmetry.
This is Wilson’s solution to the doubling problem (Wilson, 1975).

4.3 Wilson fermions

K. Wilson proposed to add to the naive action the following term

∆WS = −a4
∑

x

ψ̄(x)
ra

2
∂̂∗µ∂̂µψ(x). (4.47)
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where r is some arbitrary constant of O(1). Note that this term does break explicitely
chiral symmetry since it is like a momentum-dependent mass term. It is easy to see
that the propagator in momentum space is modified to

〈ψα(x)ψ̄β(y)〉F =

∫

BZ

d4p

(2π)4
eip(x−y)

∑
µ iγµ

sin(pµa)
a +m+ r

a

∑
µ(1− cos pµa)

. (4.48)

As before the integration over p0 can be performed as a sum of residues of the
solutions, in the region Im p0 > 0, −π < Re p0 < π, of

∑

µ

sin2 pµ +

(
m+

r

a

∑

µ

(1− cos pµa)

)2

= 0. (4.49)

For r = 1 (Wilson’s choice) the only solution is at p0 = iωp satisfying

coshωp =
1 +

∑
k sin

2 pka+ (ma+ 1 +
∑

k(1 − cos pka))2

2(ma+ 1 +
∑

k(1− cos pka)
. (4.50)

The pole corresponding to the temporal doubler is absent. Also the spatial momenta
of eq. (4.28), have an energy

ω(α)
p =

1

a
ln

(
1 +ma+ 2

∑

k

n(α)
k

)
, (4.51)

therefore the only pole that survives in the continuum limit (i.e. lima→0 aωp = 0)

corresponds to n(α)
k = 0 for all k. The others have energies of the order of the cutoff.

Wilson’s solution therefore gets rid of doublers at the cost of breaking chiral sym-
metry.

Exercise 3.1 Symmetries of Wilson fermions. Show that the Wilson Dirac operator
satisfies γ5-hermiticity:

D† = γ5Dγ5

and is invariant under the discrete symmetries: C, P and T :

P : ψ(x) → γ0ψ(xP ) (4.52)

ψ̄(x) → ψ̄(xP )γ0 (4.53)

T : ψ(x) → γ0γ5ψ(xT ) (4.54)

ψ̄(x) → ψ̄(xT )γ5γ0 (4.55)

C : ψ(x) → Cψ̄T (x) (4.56)

ψ̄(x) → −ψT (x)C−1 (4.57)

(4.58)

where xP = (x0,−x), xT = (−x0,x) and C = γ0γ2, which satisfies
CγµC = −γ∗µ = −γTµ .
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Exercise 3.2 Show that the γ5-hermiticity implies that for the complex eigenvalues
of D, the corresponding eigenvectors satisfy

v†λγ5vλ = 0, λ∗ .= λ. (4.59)

Real eigenvalues on the other hand can have non-zero chirality.

4.3.1 Transfer matrix of Wilson fermions and unitarity

Actually, Wilson fermions with r = 1 are the only fermion regularization for which
the transfer matrix has been proven to be positive (Wilson, 1975; Lüscher, 1977; Smit,
1991).

As in the scalar case, we will proceed by finding a transfer operator T̂ acting on
Fock space such that

ZF = lim
N→∞

Tr[T̂N ], (4.60)

and proving that it is positive in such a way that the Hamiltonian Ĥ = − 1
a ln T̂ is well

defined.
We need the equivalent to the Schrödinger representation of states. For the scalar

field we defined the basis |φ〉 (the analogue of the position basis in ordinary QM), such
that

φ̂(x)|φ〉 = φ(x)|φ〉. (4.61)

In the fermion case, similarly, we define a basis |a〉 (Smit, 2002), such that

âk|a〉 = ak|a〉, (4.62)

where âk are the annihilation operators in Fock space and ak are Grassmann variables
that represent the classical fermion field, which can be shown to anticommute with
the operators.

One can show that the state |a〉 can be constructed from the vacuum as:

|a〉 =
∏

k

e−akâ
†
k |0〉. (4.63)

Using the properties of the Grassmann integrals, one can also show that the basis
|a〉 satisfies the completeness relation

∫
da†da

|a〉〈a|
〈a|a〉

= 1, (4.64)

where

〈a|a〉 =
∏

k

ea
†
kak ≡ ea

†a, a†a =
∑

k

a†kak. (4.65)
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Any arbitrary state in Fock space can be written as

|ψ〉 =
∑

p

1

p!
ψk1,...kp â

†
k1
....â†kp

|0〉. (4.66)

It has a wave function in the |a〉 basis:

〈a|ψ〉 ≡ ψ(a†) =
∑

p

1

p!
ψk1,...kpa

†
k1
....a†kp

. (4.67)

Let us consider any normal-ordered operator Â

Â =
∑

p,q

1

p!q!
Ak1...kp â

†
k1
...â†kp

âlq ...âl1 . (4.68)

The matrix elements of the operators in this basis can be shown to be:

A(a†, a) ≡ 〈a|Â|a〉 = 〈a|a〉
∑

p,q

1

p!q!
Ak1...kpa

†
k1
...a†kp

alq ...al1 . (4.69)

Finally, the following relations can also be derived (Smit, 2002):

• Trace:

TrÂ ≡
∑

p

1

p!

∑

k1,...,kp

〈k1, ..., kp|Â|k1, ...kp〉 =
∫

da†dae−a†aA(a†,−a). (4.70)

• The product of three operators, Â, B̂ and Ĉ, where B̂/Ĉ only depend on cre-
ation/destruction operators respectively, while Â depends on both, satisfies:

〈a|B̂ÂĈ|a〉 = B(a†)A(a†, a)C(a). (4.71)

• Operators of the exponential form

Â = exp

(
∑

kl

â†kMklâl

)
, (4.72)

satisfy

A(a†, a) = exp
(
a†eMa

)
. (4.73)

Let us see now how we can idenfity the transfer operator

Tr[T̂N ] =

∫
da†NdaNe−a†

NaN 〈aN |T̂N |− aN 〉

=

∫ ∏

n

(
da†ndan

)
e−a†

NaN 〈aN |T̂ |aN−1〉e−a†
N−1aN−1〈aN−1|T̂ |....|a1〉e−a†

1a1〈a1|T̂ |− aN 〉,

(4.74)

that should be compared with eq. (4.18). As in the scalar case, we should somehow
identify the an with the ψ at fixed times.
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The Wilson fermion action (for r = 1) can be written as

SW [ψ, ψ̄] = a3
∑

x0

∑

x,y

ψ†(x, x0)(γ0Axy +Bxy)ψ(y, x0)

+a4
∑

x0,y0

∑

x

ψ†(x, x0)
1

2a
(P−δy0x0+a − P+δy0x0−a)ψ(x, y0), (4.75)

where

Axy ≡ (ma+ 4) δxy −
1

2

∑

k

(δyx+k̂a + δyx−k̂a) (4.76)

Bxy ≡
1

2

∑

k

γ0γk(δyx+k̂a − δyx−k̂a) (4.77)

and P± = (1± γ0)/2 are projectors in spinor space, with P+ + P− = 1.
Let us now decompose the fermions into their ± components and let us define a

basis of the Grassmann variables ax0 (we omit for simplicity the index that runs over
x and the spinor indices) in the following way:

(a†x0
P+)T ≡ P+ψ(x0)a3/2, P−ax0 ≡ P−ψ(x0 + a)a3/2, (4.78)

a†x0
P− ≡ ψ†(x0)P−a3/2, (P+ax0)

T ≡ ψ†(x0 + a)P+a3/2, (4.79)

so that the ± components of ψ correspond to those of the a variables at different time
slices. With these identifications, we can rewrite the action as

SW [ψ, ψ̄] =
∑

x0

(
a†x0

ax0 − a†x0
Aax0−a + ax0−aP+BP−ax0−a + a†x0

P−BP+a
†
x0

)
.(4.80)

Therefore, we find an exact matching if we identify |an〉 → |ax0〉 so that

e
−
∑

x0
a†
x0

ax0 → e−
∑

n
a†
nan (4.81)

〈an|T̂ |an−1〉 → 〈ax0 |T̂ |ax0−a〉
= exp(−a†x0

P+BP−a
†
x0
) exp(a†x0

Aax0−a) exp(−ax0−aP+BP−ax0−a),

(4.82)

which implies, according to eq. (4.73),

T̂ = exp(−â†P+BP−â
†) exp(â† ln(A)â) exp(−âP−BP+â). (4.83)

Probing the positivity is now straightforward. The operator in the middle is positive
if A is positive. In momentum space the operator is

A(p) = ma+ 4 +
∑

k

cos pka > 0. (4.84)
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Since the transfer matrix has the structure

T̂ = T̂ †
1 T̂2T̂1, (4.85)

for any state |ψ〉

〈ψ|T̂ †
1 T̂2T̂1|ψ〉 = 〈ξ|T̂2|ξ〉 > 0, |ξ〉 = T̂1|ψ〉, (4.86)

and T̂ is a positive Hermitian operator, from which a Hermitian Hamiltonian can be
defined. Therefore the lattice formulation of Wilson fermions with r = 1 has a direct
Hilbert space interpretation, just as the scalar theory.

The case r .= 1 cannot be treated in the same way, and in fact positivity has
not been proven. Reflection positivity on the other hand can be proved for r ≤ 1
(Osterwalder and Seiler, 1978; Menotti and Pelissetto, 1987).

4.4 Kogut-Susskind or staggered fermions

Given that naive lattice fermions correspond to 2d Dirac fermions in the continuum,
one idea would be to use some of the doublers to represent the 4 = 2d/2 spinor
components of a Dirac fermion. Kogut and Susskind (Kogut and Susskind, 1975)
proved that this can be done, therefore reducing the doubling problem to that of
2d/2d/2 replicas instead of 2d. The advantage is that the lattice action can be shown
to have an extra exact U(1) symmetry compared to the Wilson action.

Let us briefly review the construction of the Kogut-Susskind action. There are two
steps

• Perform a local unitary rotation of the fermion fields that diagonalizes the action
in spinor space. That is, find a unitary Sx such that

S†
xγµSx+µ̂a = ρxµI. (4.87)

It is easy to prove that the choice

Sx ≡ γn0
0 ...γn3

3 =
∏

µ

γnµ
µ x = a (n0, n1, n2, n3) (4.88)

satisfies eq.(4.87) with ρxµ = (−1)
∑

ρ<µ
nρ . We can therefore perform the transforma-

tion of the spinors

ψ(x)α → (Sx)αβψβ(x) ≡ χα(x), (4.89)

and the action factorizes in the four spinor components

SKS = a4
∑

x,α

[
∑

µ

ρxµχ̄
α(x)

1

2
(χα(x+ aµ̂)− χα(x − aµ̂)) +mχ̄α(x)χα(x)

]
.(4.90)

We can therefore consider just one of this replicas that we call χ.

• Reconstruction of the Dirac field
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In order to reconstruct the Dirac field using the doublers associated to the variable
χ, one needs to consider a lattice with a doubled lattice spacing 2a. The Dirac fields
will be Grassmann variables defined on this coarser lattice. We can define therefore
coordinates in the new lattice as

yµ = 2aNµ, (4.91)

while the coordinates of the points in the original lattice can be labelled as

x = anµ = 2aNµ + azµ, zµ = 0, 1. (4.92)

Therefore we define new fields on the coarser lattice that will have a space-time coor-
dinates yµ = 2aNµ and also other 2d internal components labelled by zµ:

χ(na) ≡ ψz(2Na). (4.93)

It is easy to show that

χ(n+ µ̂) =
∑

z′

δz+µ̂z′ψz′(N) + δz−µ̂z′ψ(N + µ̂)z′ (4.94)

χ(n− µ̂) =
∑

z′

δz−µ̂z′ψz′(N) + δz+µ̂z′ψ(N − µ̂)z′ . (4.95)

Defining

Γµ
zz′ ≡ ρzµ(δz+µ̂z′ + δz−µ̂z′)Γ5µ

zz′ ≡ ρzµ(δz−µ̂z′ − δz+µ̂z′) (4.96)

where

ρzµ = (−1)
∑

ν≤µ
zν (4.97)

it is easy to show that in terms of the new fields the action is

SKS = a4
∑

N,z

∑

µ

ψ̄z(N)
1

4

[
Γµ
zz′(∂̂µ + ∂̂∗µ) + Γ5µ

zz′a∂̂∗µ∂̂µ
]
ψz′(N), (4.98)

where ∂̂µ, ∂̂∗µ are the forward and backward derivatives in the coarser lattice.
Furthermore, we can show that

Γµ
zz′ = Tr

[
S†
zγµSz′

]
, (4.99)

Γ5µ
zz′ = Tr

[
S†
zγ5Sz′γ5γµ

]
. (4.100)

with

Sz ≡
∏

ν

γzνν . (4.101)

Finally, defining

Ψαi(N) ≡
∑

z

(Sz)αiψz(N) Ψ̄αi(N) ≡
∑

z

ψ̄z(N)
(
S†
z

)
iα

, (4.102)

we can get back four Dirac spinors with spinor index α and flavour index i. After a
simple normalization we get the Kogut-Susskind action in terms of the new variables:

SKS = (2a)4
∑

µ,N

[
Ψ̄(N)(γµ ⊗ 1)

1

2
(∂̂µ + ∂̂∗µ)Ψ(N) + aΨ̄(N)(γ5 ⊗ γTµ γ

T
5 )

1

2
a ∂̂µ∂̂

∗
µΨ(N)

]
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+ (2a)4m
∑

N

Ψ̄(N)Ψ(N), (4.103)

where the first γ matrices act on spinor variables, and the second in flavour ones.
A few comments are in order:

• In the naive continuum limit, the ”Wilson”-type term vanishes and the action
goes to the continuum action of four free massive Dirac spinors.

• The action looks quite similar to the Wilson action. The difference is the Dirac/flavour
structure of the Wilson term.

• The action has an exact U(1) chiral symmetry for m = 0 under spin-flavour
rotations of the form

ΨN → eiα(γ5⊗γ
T
5 )ΨN , Ψ̄N → Ψ̄Neiα(γ5⊗γ

T
5 ). (4.104)

This symmetry can be preserved in the interacting case, and ensures a chiral
symmetry in the continuum limit without extra fine-tunings.

The transfer matrix operator has been constructed also for staggered fermions
(Smit, 2002), but it is not positive, therefore there is no warranty that the formula-
tion has a Hilbert space formulation at finite lattice spacing. The hope is therefore
that unitarity is recovered in the continuum limit, which seems to be the case in the
lowest orders of perturbation theory. Further subtleties of staggered fermions in the
interacting case can be found in the lectures of M. Golterman (Golterman, 2009).

Recently very significant progress has been achieved in the constructions of fermion
actions that preserve a lattice chiral symmetry. These new developments are covered
in the lectures of D. Kaplan (Kaplan, 2009).

Exercise 3.3 Two flavours of twisted-mass Wilson fermions are defined by the
Wilson action with a mass term that has the form

m+ iµγ5τ3, τ3 =

(
1 0
0 −1

)
. (4.105)

Show that in the naive continuum limit the action is equivalent to the standard
Dirac action by performing a chiral rotation of the form

ψ → ei
α
2 γ5τ3ψ, ψ̄ → ψ̄ei

α
2 γ5τ3ψ, tanα =

µ

m
. (4.106)
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Lattice Gauge Fields

5.1 Lattice gauge field theories: abelian case

K. Wilson figured out how to formulate a quantum field theory of gauge fields on the
lattice preserving an exact gauge invariance (Wilson, 1974).

We will first derive the lattice formulation of an abelian gauge theory and then we
will generalize the construction to other gauge theories such as SU(3) describing the
color interactions.

An easy way to understand how this is done is to consider the case of charged
particles (scalar ones to make it simple). A scalar charged particle is described by
a complex scalar field. The results of chapter 3 can be readily applied to a complex
scalar field.

It is well known that gauge invariance in quantum mechanics corresponds to a
symmetry under local rephasing of the wave functions describing the charged particles,
and a shift of the gauge potentials. Maxwell equations are invariant under

Aµ(x) → Aµ(x) + ∂µΛ(x), (5.1)

while the Schrödinger equation describing a particle with charge q in this field is also
invariant if there is a simultaneous rephasing of the charged field wave function by

φ(x) → eiqΛ(x)φ(x) ≡ Ω(x)φ(x). (5.2)

Let us consider the case in which the electromagnetic field strength vanishes in all
space, that is we consider a pure gauge configuration, i.e. Aµ = ∂µF (x) for arbitrary
F (x). We can then choose a gauge in which the gauge potential vanishes. In this gauge
it is easy to discretize the scalar action, it is just the one corresponding to a free scalar
field:

S =
a4

2

∑

x,y

φ†(x)Kxyφ(y), (5.3)

with

Kxy = −
1

a2

∑

µ̂

(δx+aµ̂y + δx−aµ̂y − 2δxy) +m2δxy. (5.4)

Now, let us change the gauge, which implies a rephasing of the charged fields,

φ(x) → eiqΛ(x)φ(x) = φ′(x) φ(x)† → φ(x)†e−iqΛ(x) = φ′(x)†, (5.5)

and a change of the gauge field to A′
µ = ∂µΛ(x).
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The action in terms of the new fields, φ′(x), should therefore correspond to the
action of a scalar field coupled to the gauge field A′

µ = ∂µΛ. Substituting φ(x) in
terms of φ′(x) in eq. (5.3), we find:

S =
a4

2

∑

x,y

φ′
†
(x)KΛ

xyφ
′(y), (5.6)

where

KΛ
xy = −

1

a2

∑

µ̂

(
δx+aµ̂yUµ(x) + δx−aµ̂yU

†
µ(x− aµ̂)− 2δxy

)
+m2δxy. (5.7)

We have introduced the so-called link variables, defined as

Uµ(x) ≡ eiqΛ(x)e−iqΛ(x+aµ̂) = e
−iq
∫ x+aµ̂

x
∂µΛ(x)dxµ ≡ e

−iq
∫ x+aµ̂

x
dxµA

′
µ(x). (5.8)

The link variable is nothing but a parallel transporter between two adjacent points on
the lattice, x+ aµ̂ and x:

P (x, a+ aµ̂) ≡ exp

(
iq

∫ x

x+aµ̂
A′

µ(x)dxν

)
. (5.9)

The integral can be done along the straight line:

xµ(t) = x+ taµ̂, t = [0, 1], (5.10)

and this is why we associate it to a link. In the following, we will absorb the charge q
in the gauge potential.

We can now check that the action in eq. (5.6) in terms of A′
µ is gauge invariant

for any gauge field (not just the pure gauge configurations we started with). Consider
a general continuum gauge field Aµ(x), not necessarily with vanishing field strength.
The gauge transformation of a parallel transporter between points x and y is

PΛ(y, x) = exp

(
i

∫ y

x
(Aµ + ∂µΛ)dxµ

)
= exp

(
i

∫ y

x
Aµdxµ + iΛ(y)− iΛ(x)

)

= exp(iΛ(y))P (y, x) exp(−iΛ(x)) = Ω(y)P (y, x)Ω†(x). (5.11)

The lattice action of eq. (5.6) is indeed invariant under the gauge transformation

φ′(x) → Ω(x)φ′(x) Uµ(x) → Ω(x)Uµ(x)Ω
†(x+ aµ̂). (5.12)

It is easy to generalize this procedure to fermions or any other charged fields.
Starting with the free action we can couple the field to a gauge field by substituting
the partial derivatives by covariant ones:

∂̂µψ(x) =
1

a
(ψ(x+ aµ̂)− ψ(x)) → ∇µψ(x) =

1

a
(Uµ(x)ψ(x + aµ̂)− ψ(x)) ,
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<

Uµ(x)

∨Uν(x+ aµ̂)∧U †
ν (x)

>

U †
µ(x+ aν̂)

!

x
!

x+ aµ̂

!

x+ aµ̂+ aν̂
!

x+ aν̂

Fig. 5.1 Plaquette

∂̂∗µψ(x) =
1

a
(ψ(x) − ψ(x− aµ̂)) → ∇∗

µψ(x) =
1

a

(
ψ(x)− U †

µ(x− aµ̂)ψ(x− aµ̂)
)
.

(5.13)

5.1.1 Path integral

Now that we have identified the parallel transporters as the basic gauge variables on
the lattice, we still need to construct the Euclidean lattice path integral to represent
the continuum one

Z =

∫
dAµe

−S[Aµ] S[Aµ] ≡
1

4

∫
d4xFµνFµν , (5.14)

where Fµν = ∂µAν − ∂νAµ is the field strength. Obviously we must do this ensuring
that eq. (5.12) remains a symmetry.

Let us consider any ordered loop of parallel transporters, a so-called Wilson loop.
A Wilson loop starting and ending in the point x transforms as

W (x) ≡ P (x, y1)P (y1, y2)....P (yn, x) → Ω(x)W (x)Ω(x)† . (5.15)

In the case of an abelian group, W (x) is therefore invariant.
Since we want our action to be local, we can try with the smallest Wilson loop,

which is a loop around the basic plaquette, see Fig. 5.1:

Uµν(x) ≡ Uµ(x)Uν(x+ aµ̂)U †
µ(x+ aν̂)U †

µ(x), (5.16)

indeed under a gauge transformation

Uµν(x) → Ω(x)Uµν(x)Ω(x)
†. (5.17)

It is an easy exercise to check that if we define a lattice gauge field Âµ by
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Uµ ≡ eiqaÂµ(x), (5.18)

then

Uµν(x) = e−iqa2F̂µν+O(a3), (5.19)

where

F̂µν(x) ≡ ∂̂µÂν(x)− ∂̂νÂµ(x), (5.20)

and the derivatives are discrete ones, eq. (3.8).
From this result it is easy to guess a good lattice action for the link variables:

S[U ] =
1

q2

∑

x

∑

µ≤ν

[
1−

1

2

(
Uµν(x) + U †

µν(x)
)]

, (5.21)

which satisfies the basic properties:

• It is local
• It is real
• It is gauge invariant
• It has the right classical continuum limit 1:

lim
a→0

S[U ] =

∫
d4x

1

4
F 2
µν +O(a2) (5.22)

We still need to define the measure over the link variables. Since the link variables
are elements of U(1) we can define a gauge invariant measure as

dU ≡
∏

µ,x

dφµ(x) Uµ(x) = eiφµ(x), 0 ≤ φµ(x) ≤ 2π. (5.23)

Since the variables at different points are independent, and a gauge transformation
induces a constant shift of the phase of each link variable,

φµ(x) → φ′µ(x) = Λ(x) + φµ(x)− Λ(x+ aµ̂), dφµ(x) = dφ′µ(x), (5.24)

this measure is gauge invariant. We will see that the measure is less trivial in the
non-abelian case.

5.2 Lattice gauge field theories: non-abelian case

The colour interactions in QCD are based on the non-abelian gauge symmetry SU(3).
In the continuum, the Yang-Mills theory based on a group SU(N) is a quantum field

1Whether a continuum limit of this discretized theory exists is of course not warrantied from this
property.
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theory of the vector gauge potential Aµ(x) that takes values in the Lie algebra of the
gauge group:

Aµ(x) = Aa
µ(x)T

a, (5.25)

where the coefficients Aa
µ(x) are real and T a = (T a)† are the Hermitian generators of

the algebra. The Yang-Mills field tensor is defined by

Fµν(x) = ∂µAν(x) − ∂νAµ(x)− i[Aµ(x), Aν(x)], (5.26)

which is also an element of the algebra.
A gauge transformation is:

Aµ(x) → Ω(x)Aµ(x)Ω(x)
−1 + iΩ(x)∂µΩ(x)

−1, (5.27)

where Ω(x) ∈ SU(N). It implies the following transformation of the field tensor

Fµν(x) → Ω(x)Fµν (x)Ω(x)
−1. (5.28)

The Euclidean Yang-Mills action is given by

S[Aµ] =
1

2g20

∫
d4xTr [FµνFµν ] , (5.29)

and is therefore gauge invariant.
A colored scalar field in the fundamental representation of this symmetry group

transforms as

φ(x) → φ′(x) = Ω(x)φ(x) Ω ∈ SU(N). (5.30)

The main difference with the U(1) case is that now the Ω are N ×N matrices that do
not commute.

We can proceed as for the U(1) case above and start with the free action of colored
scalar fields eq. (5.3). We can then identify the way gauge fields appear in the lattice
action by performing a gauge transformation of the coloured fields, φ(x) → φ′(x). The
field φ′(x) will then be coupled to a gauge field, according to eq. (5.27),

A′
µ(x) = iΩ(x)∂µΩ(x)

−1. (5.31)

When we do this, we find the same result as in the U(1) case, eq. (5.6), provided we
define the link variables as

Uµ(x) ≡ Ω(x)Ω(x + aµ̂)†. (5.32)

This corresponds to the parallel transporter of the non-abelian gauge field eq. (5.31)
from x+ aµ̂ to x.

To see this, let us recall the definition of a parallel transporter for SU(N). Consider
a N component vector v of unit length and a curve in R4 that can be parametrized by
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zµ(t). A parallel transport of v, along such a curve from points t0 to t, in the presence
of the field Aµ is the solution of the equation

[
d

dt
− i

dzµ(t)

dt
Aµ(zµ(t))

]
v(t) = 0. (5.33)

The parallel transporter from zµ(t0) = x to zµ(t) = y, P (y, x), is the matrix that
satisfies

v(t) = P (y, x)v(t0). (5.34)

In the abelian case, the solution to this equation is eq. (5.9). For the non-abelian case,
the solution can be written as a series in Aµ:

v(t) =

(
I + i

∫ t

0
dt1żµ(t1)Aµ(z(t1))

−
∫ t

0
dt1żµ(t1)Aµ(z(t1))

∫ t1

0
dt2żν(t2)Aν(z(t2)) + ...

)
v(t0)

≡ P exp

(
i

∫ y

x
Aµ(z)dzµ

)
v(t0). (5.35)

Now it is easy to check (see exercise), using the definition, eqs. (5.33) and (5.34), that
the parallel transporter from two adjacent points on the lattice x + aµ̂ and x in the
vector potential of eq. (5.31) is given by eq. (5.32).

Similarly from the definition it is easy to show that the gauge transformation of a
parallel transporter is

P (y, x) → Ω(y)P (y, x)Ω†(x). (5.36)

Exercise 4.1 Prove, using the definition of the parallel transporter of eq. (5.33), that

• the link variable

Uµ(x) ≡ Ω(x)Ω(x + aµ̂)†, (5.37)

is a parallel transporter from x+ aµ̂ to x
• the gauge transformation of a parallel transporter is

U(x, y) → Ω(x)U(x, y)Ω†(y). (5.38)

These properties are sufficient to ensure the gauge invariance of the plaquette action
also for SU(N):
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S[U ] ≡ C
∑

x

∑

µ<ν

Tr

[
1−

1

2

(
Uµν(x) + U †

µν(x)
)]

. (5.39)

The coefficient C can be chosen to recover the conventional normalization in the
classical continuum limit, eq. (5.29):

C ≡
2

g20
, (5.40)

where g0 is the gauge coupling.

5.2.1 Gauge Measure and Path integral

In order to define the path integral we still need to define the measure over the link
variables in a gauge invariant way. Since the link variables are elements of a compact
group SU(N), the measure is nothing but the Haar measure on the group, which can
be proven to be the unique measure which obeys two essential properties

• it is gauge invariant
∫

SU(N)
dUf(U) =

∫

SU(N)
f(V U)dU =

∫

SU(N)
f(UV )dU, (5.41)

for any V ∈ SU(N)
• it is normalized

∫

SU(N)
dU = 1. (5.42)

Let us consider any parametrization of the group in terms of n coordinates, zi,
then

dU = w(z)dz1dz2...dzn, (5.43)

where nmust be the number of generators of the algebra. The invariance of the measure
requires

dU(z′) = d(V U(z)W †) = dU(z), (5.44)

for arbitrary V,W ∈ SU(N). Therefore

w(z′)dz′1...dz
′
n = w(z′)| det(∂z′a/∂zb)|dz1....dzn = w(z)dz1...dzn (5.45)

or

w(z′) = w(z)/J(z, z′), (5.46)

where J(z, z′) is the Jacobian of the transformation z → z′. If there were two different
measures satisfying this property, the only possibility is that both functions are pro-
portional up to a constant. The constant is then fixed by the normalization condition
and the measure is unique given a set of coordinates.
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Once we are sure that the measure is unique, we can find it by explicit construction.
We can define a metric tensor in the group by

gkl ≡ −2Tr[(U∂kU
−1)(U∂lU

−1)], (5.47)

which can be shown to be positive definite and gauge invariant. The measure in this
coordinates can then be defined as

w(z) = c
√
det g(z), (5.48)

where c is obtained from the normalization condition.

Exercise 4.2 Using the Haar measure, eqs. (5.47) and (5.48), show that

∫
dUf(U) =

∫
dUf(U∗) =

∫
dUf(U−1). (5.49)

We will now show a few of the most commonly used coordinates in the simplest
case of SU(2).

5.2.2 Examples of coordinate systems for SU(2)

1) For SU(2) a useful parametrizationmaps the group elements to a three-dimensional
sphere S3:

U = x0 + ixaσa, x2 = x2
0 +

3∑

a=1

x2
a = 1, (5.50)

where σa are the Pauli matrices. The Haar measure is simply

dU =
1

π2
δ(x2 − 1)d4x (5.51)

2) From a sphere S3 we can easily go to R3 via a stereographic projection, leav-
ing undefined only the element at the north pole U = −1. The stereographic
coordinates, z = (z1, z2, z3), can be related to those on the sphere by

x0 =
(1− z2)

(1 + z2)
, xa =

2za
(1 + z2)

. (5.52)

The Haar measure is

dU = d3z
4

π2(1 + z2)3
. (5.53)
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3) Finally the exponential mapping that is useful in perturbation theory

U = exp(iφnaσ
a/2) = cos

φ

2
+ i sin

φ

2
n · σ, 0 ≤ φ ≤ 2π, (5.54)

where n are unit vectors in R3. The invariant measure is

dU =
1

4π2
dφ dΩ(n) sin(φ/2)2, (5.55)

where Ω(n) is the uniform measure in S2.

Defining a global coordinate system for SU(N) is more complicated. Very often
however explicit expressions of the measure are not needed, because integrals can be
solved by invariant tensor methods.

Exercise 4.3 Work out the Haar measure in SU(2) in terms of the variables αk:

U = exp(iαkσk), (5.56)

where σk are the Pauli matrices. Compute the constant c so that the measure is
properly normalized.

Two observations are in order:

• the integrals over the link variables are finite, there is no need to fix the gauge
• the integrals can be done via importance sampling methods, because the action
is real and positive definite

S[U ] ∼
∑

P

Tr[2− UP − U †
P ] =

∑

P

Tr[(1 − UP )(1− U †
P )] ≥ 0, (5.57)

the equality being obtained only when all plaquettes are unity: UP = 1.

Before including the sources we are interested in, we should find out what are
the operators that should represent the particle excitations in this theory. In order to
understand this we should make contact with the operator formulation via the transfer
matrix, which defines the Hamiltonian.

5.3 Transfer matrix and unitarity of the plaquette action

As for the scalar and fermion lattice field theories, we want to make sure that there is a
Hilbert space representation of the lattice gauge theory. We need therefore to identify
the field operators at t = 0 that represent creation and annihilation of particles. We
also need to identify the transfer operator that evolves the operators at t = 0 in time.
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In the Schrödinger picture, the physical states are described by wave functions that
depend on the basic field variables at time t = 0. The time evolution of these fields is
related to the Hamiltonian. At a fixed time t = 0, we can identify the spatial links:

Uk(x, 0) k = 1, 2, 3 (5.58)

with the wave function coordinates, so the Schröndiger wave function of an arbitrary
state |ψ〉 in this basis depends only on these links:

ψ[Uk(x, 0)] = 〈U |ψ〉, (5.59)

where |U〉 are the eigenbasis of the spatial link operators (i.e. analogous to the position
basis in ordinary QM):

Ûk(x)|U〉 = Uk(x, 0)|U〉. (5.60)

The states |U〉 form an orthonormal and complete basis

〈U |U ′〉 =
∏

x,k

δ(U ′
k(x, 0)− Uk(x, 0)) (5.61)

with
∫

dUδ(U,U ′) = 1. (5.62)

The scalar product of two such wave functions is therefore

〈ψ|φ〉 ≡
∫ ∏

x,k

dUk(x) ψ[U ]†φ[U ]. (5.63)

A gauge transformation leaves the scalar product invariant thanks to the invariance
of the Haar measure and therefore the symmetry transformation must correspond to
a unitarity operator,

ψ[UΩ] = ωψ[U ], (5.64)

where ω is the unitary operator that implements the gauge transformation in the space
of wave functions.

In contrast with the φ4 model previously discussed however, the Hilbert space of
physical states includes only those wave functions that are gauge invariant:

ψ[UΩ] = ψ[U ]. (5.65)

We can define a projector on gauge-invariant wave functions in the following way

ψphys[U ] = Pphysψ[U ] =

∫ ∏

x

dΩ(x)ψ[UΩ]. (5.66)

It is trivial to check, using the invariance of the measure, that the wave function
ψphys[U ] is gauge invariant. Also that the projector acts trivially on gauge-invariant
wave functions.
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The transfer matrix, T̂ , is an operator in the Hilbert space of wave functions that
must satisfy that

Z = lim
N→∞

Tr[T̂N ], N = T/a. (5.67)

We can rewrite, inserting the completeness relation for the |U〉, basis:
∫

dU (m)|U (m)〉〈U (m)| = 1, (5.68)

Tr[T̂N ] =

∫
dU (0)

∫
dU (1)...〈U (0)|T̂ |U (1)〉〈U (1)|T̂ |.....|U (N−1)|T̂ |U (0)〉

=
N−1∏

m=0

∫
dU (m)〈U (m)|T̂ |U (m+1)〉, (5.69)

where |U (m)〉 are basis states at the time slice x0 = mT/N = ma and |U (N)〉 = |U (0)〉.
We can therefore identify the coordinates U (m)

k (x) with the spatial links at time ma:

U (m)
k (x) → Uk(x,ma), (5.70)

with periodic boundary conditions in time.
Let us rewrite the plaquette action in the following way

S[U ] =
1

g20

∑

m

∑

x

(
∑

k<l

Tr[2− Ukl(x,ma)− U †
kl(x,ma)]

+
∑

k

Tr[2− Uk0(x,ma)− U †
k0(x,ma)]

)

=
∑

m

{
V [U (m)] +K[U (m), U (m+1)] + V [U (m+1)]

}
, (5.71)

where

V [U (m)] ≡
1

2g20

∑

x

∑

k<l

Tr[2− Ukl(x,ma) − U †
kl(x,ma)], (5.72)

K[U (m), U (m+1)] ≡
1

g20
Tr[2− (Uk(x,ma)U0(x+ ak̂,ma)U †

k(x,ma+ a)U †
0 (x,ma) + h.c.)].

(5.73)

Now we can rewrite the path integral separating the integration over spatial and
temporal links:

Z =
∏

m

∫ ∏

x,k

dUk(x,ma)dU0(x,ma) exp
[
−(V [Um] +K[U (m), U (m+1)] + V [U (m+1)])

]
,
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(5.74)

which can be written in the form of eq. (5.69) if we identify

〈U (m)|T̂ |U (m+1)〉 =
∫ ∏

x

dU0(x,ma) exp
[
−(V [Um] +K[U (m), U (m+1)] + V [Um+1])

]
.

(5.75)

Therefore the operator T̂ has the form

T̂ = e−V̂ T̂Ke−V̂ , (5.76)

where V̂ is an Hermitian operator diagonal in the |U〉 basis

〈U ′|V̂ |U〉 = V [U ]δ(U ′, U), (5.77)

and V [U ] is defined in eq. (5.72). The kinetic operator satisfies

〈U ′|T̂K |U〉 =
∫ ∏

k,x

dΩ(x) exp

(
−

1

g20
Tr[2− (U ′

k(x)Ω(x + ak̂)U †
k(x)Ω

†(x) + h.c.)]

)
.

(5.78)

We define the operator T̂ 0
K :

〈U ′|T̂ 0
K |U〉 ≡ exp

(
−

1

g20
Tr[2− (U ′

k(x)U
†
k(x) + h.c.)]

)
. (5.79)

It is easy to show that

〈U ′|T̂K |U〉 = 〈U ′|T̂ 0
KPphys|U〉 = 〈U ′|PphysT̂

0
K |U〉, (5.80)

for all |U〉, |U ′〉, where Pphys is the projector we have defined in eq. (5.66). From this
we can easily show two important properties:

• T̂K commutes with the projector on physical states, and therefore only transforms
physical states (gauge invariant under time independent gauge transformations)
to physical states:

T̂KPphys = T̂ 0
KP2

phys = T̂ 0
KPphys = T̂K = PphysT̂

0
K = PphysT̂K (5.81)

The same is true for T̂V . It is easy to see this by realizing that it is diagonal in
the U basis and that the eigenvalues are gauge invariant.

• The transfer matrix is positive definite. We need to show that

〈ψ|T̂ |ψ〉 > 0 (5.82)

for all physical states |ψ〉 (〈ψ|ψ〉 = 1 and Pphys|ψ〉 = |ψ〉). Since

〈ψ|e−V̂ T̂Ke−V̂ |ψ〉 = 〈φ|T̂K |φ〉 (5.83)

where |φ〉 ≡ e−V̂ |ψ〉, it is sufficient to prove the positivity of T̂ 0
K

〈ψ|T̂ 0
K |ψ〉 = e

− 2N
g2
0

∫
dUdU ′ψ[U ′]∗ψ[U ] exp



 1

g20

∑

k,x

Tr[U ′
k(x)U

†
k(x) + h.c.]



 .
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(5.84)

We can now expand the exponential in powers of 1/g20. Each term in the series
can be shown to be positive by noticing that each term is a positive constant
(coefficients of the Taylor expansion of the exponential) times an integral of the
form

∫
dUdU ′ψ[U ′]∗ψ[U ] (U ′

αβU
∗
αβ)

n(UγδU
′∗
γδ)

m

= r∗α1...αn,β1,...,βn,γ1,...γm,δ1,...δmrα1...αn,β1,...,βn,γ1,...γm,δ1,...δm ≥ 0 (5.85)

where

rα1...αn,β1,...,βn,γ1,...γm,δ1,...δm ≡
∫

dUψ[U ]U∗
α1β1

....U∗
αnβn

Uγ1δ1 ....Uγmδm .(5.86)

All terms must vanish for it to be zero. If the integral of a function ψ[U ] with any
power of U and U∗ is zero, the function must vanish. Therefore, for all normaliz-
able wave functions, the positivity condition must hold.

Summarizing, we have identified the field operators, Ûk(x), which represent the
spatial links at x0 = 0, and a positive transfer operator that determines their time
evolution. Euclidean correlation functions of gauge-invariant combinations of such op-
erators at arbitrary times can be represented by the corresponding functional integrals
in the Wilson formulation of lattice gauge theories. The simplest gauge-invariant field
operator is the spatial plaquette.

Having a unitary theory is reassuring, but the infrared behaviour of this theory is
highly non-trivial. We believe two fundamental phenomena take place:

• Generation of a mass gap (in spite of the absence of dimensionful couplings)
• Confinement or the property that asymptotic states are gauge singlets

A very useful intuition can be obtained from the strong coupling expansion of the
lattice theory, as first realized by Wilson (Wilson, 1974), where both phenomena can
be shown to take place.

5.4 Strong Coupling Expansion: confinement, mass gap

The strong coupling expansion is an expansion in inverse powers of the coupling g0,
which by the structure of the path integral is equivalent to a high temperature expan-
sion of the statistical system:

Z = C

∫ ∏

l

dUle
− β

2N

∑
p
[χ(Up)+χ(U

†
p )], (5.87)

where l, p is a short-hand notation for the links and plaquettes respectively,

χ(Up) ≡ Tr [Up] (5.88)

is the character of Up and
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β ≡
2N

g20
. (5.89)

Therefore a series expansion for large g0 corresponds to an expansion for small β or
high temperature:

Z =

∫ ∏

l

dUl

∏

p

∑

n

1

n!

(
β

2N

)n

(χ(Up) + χ(Up)
∗)n . (5.90)

Since χ(Up) is bounded, the series has a finite radius of convergence, in contrast with
the small g0 expansion. The strong coupling expansion has been worked out to very
high orders. A more detailed discussion can be found in the literature (Montvay and
Münster, 1994).

Working out the leading contribution to a given observable is quite simple noticing
two facts. The leading order contribution has the lowest number of plaquettes. All link
variables must be shared by at least two plaquettes, since any unpaired link results in
a zero contribution by

∫
dU Uαβ = 0. (5.91)

For the following two examples, the only non-trivial integral needed is that of two links
∫

dU UαβU
†
γδ =

1

N
δαδδβγ . (5.92)

5.4.1 Plaquette-Plaquette correlator and mass gap

We have seen that correlation functions of spatial plaquettes should be able to describe
the propagation and scattering of physical particles. Since these objects are gauge
invariant, they cannot be gluons and they are called generically glueballs. According
to the Källen-Lehmann representation, we should be able to find out the presence of
a mass gap in the theory by studying the correlator of two spatial plaquettes at large
time separation.

Let us consider a plaquette Ukl(x, x0) in any two spatial directions, k̂ and l̂, fixed
at a position (x, x0) and another one parallel and with opposite orientation to the first
at the position (x, x0 + T ). The leading diagram with paired links and the minimum
tiling of plaquettes is given by a rectangle linking the two external plaquettes, Fig. 5.2.
The β and N dependence is given by

(
β

2N

)Np
(

1

N

)Ni

NNv , (5.93)

since each internal plaquette brings a factor β/2N , each integral over two paired links
brings in a factor 1/N , eq. (5.92), and each vertex gives a factor of N . In this case we
have

Np = #plaquettes = 4T/a (5.94)

Ni = #integrals = #links/2 = 2(Np + 2) (5.95)

Nv = #vertices = Nv = 4(T/a+ 1) (5.96)
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Fig. 5.2 Minimum tiling of the plaquette two-point correlator

Putting all together we find

Cpp(T ) ∼
(

β

2N2

)4T/a

= exp

(
−
4

a
ln

(
2N2

β

)
T

)
, (5.97)

therefore the correlator decays exponentially in time as expected in a theory with a
finite mass gap, where correlators decay as exp(−mT ). In this case the mass gap is

m ∼
4

a
ln

(
2N2

β

)
. (5.98)

Unfortunately no continuum limit can be reached in the strong coupling expansion
since lima→0 ma = finite. It is only in the continuum limit where we expect to find the
universal behaviour of Yang-Mills field theory and therefore this result is not enough
to prove the existence of a mass gap. One would need to ensure by other means that
this behaviour survives in the continuum limit.

5.4.2 Wilson Loop and the static potential

Let us consider a rectangular loop with two spatial sides and two temporal ones, WRT ,
Fig. 5.3. The spatial side length is R and the temporal one is T . It is easy to work
out the leading order strong coupling behaviour of such an observable. It corresponds
to the diagram where the loop is tiled up with plaquettes parallel to the loop. The
behaviour is

〈WRT 〉 =
(
β

2N

)Np
(

1

N

)Ni

NNv , N > 2 (5.99)

where it is easy to count plaquettes, paired links and vertices:

Np = (R/a)(T/a) Ni = 2Np + (R/a+ T/a) Nv = (R/a+ 1)(T/a+ 1),(5.100)

so the final result is

〈WRT 〉 ∼ N

(
β

2N2

)RT/a2

∼ exp

(
− ln

(
2N2

β

)
RT

a2

)
∼ exp (−σArea) . (5.101)



Lattice Gauge Fields

〈 〉

R

T

><

∧

" " "

"

"

"

Fig. 5.3 Minimum tiling of the Wilson loop, WRT .

Therefore the rate of the exponential decay as the temporal extent increases goes
with the area encircled by the Wilson loop. This behaviour is called area-law and is a
criterium for confinement. We now discuss why this is so.

The Wilson loop is related to the static potential, that is the potential of two point
sources infinitely heavy and separated by a distance R. Let us consider for simplicity
the case of scalar particles (the result will not depend on the spin). The static limit
corresponds to an action where the spatial derivatives (spatial momenta) are neglected:

Sstat[φ] = a4
∑

x

1

2

[(
∂̂0φ
)∗
∂̂0φ+m2|φ|2

]
, |∂̂kφ| 0 mφ, (5.102)

the field values at different space points x are independent variables.
One can show (see exercise) that the correlator in the static approximation and in

the presence of a background gauge field is

〈φ(x, x0)φ
†(y, y0)〉φ =

a

2 sinh(aω)
e−(x0−y0)ωδ(x− y)U(x, x0;y, y0), (5.103)

where U(x, x0;y, y0) is the parallel transporter and

cosh(aω) = 1 +
1

2
a2m2. (5.104)

Exercise 4.4 Prove eq. (5.103) in the absence of gauge fields, ie. with the parallel
transporter set to the identity. Show that in the presence of gauge fields the static
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propagator eq. (5.103) satisfies

(−∇∗
0∇0 +m2)〈φ(x)φ†(y)〉φ = δ(x− y). (5.105)

The simplest gauge-invariant operator representing a quark and antiquark sepa-
rated by some spatial distance |y − x| = R at time t is

O(t) = φ†(y, t)U(y, t;x, t)φ(x, t). (5.106)

The correlator at large times T → ∞,

Cqq̄(T ) ≡ 〈O†(T )O(0)〉φ,U (5.107)

represents a quark-antiquark pair separated by a distance R that is created at time
x0 = 0 and evolves until time T . Integrating over the scalar fields, using eq. (5.103),
and neglecting factors that do not depend on R (e.g exp(−Tω)) we get

Cqq̄(T ) ∼ 〈Tr[U(y, T ;y, 0)U(y, 0;x, 0)U(x, 0;x, T )U †(y, T ;x, T )]〉U = 〈WRT 〉,
(5.108)

that is, the R dependence of this correlator is the same as that of a Wilson loop of
area RT . We expect therefore that the exponential decay in time of such correlator
gives us information about the energy of this system. The energy will contain a R-
independent contribution, but it will also depend on the distance due to the potential
energy between the quark and antiquark. We therefore expect

Cqq̄(T ) ∼ exp(−E(R)T ), (5.109)

where

E(R) = E0 + V (R). (5.110)

Relating eqs. (5.101) and eq. (5.108), we have

lim
β→0

V (R) =
R

a2
ln

(
2N2

β

)
+ ... = σR + ..., (5.111)

where σ is called the string tension:

lim
β→0

σ =
1

a2
ln

(
2N2

β

)
. (5.112)

The linear behaviour of the potential as a function of R is a criterium for confinement,
because the potential energy grows without bound when the quark and the antiquark
are pulled apart.



Lattice Gauge Fields

Unfortunately, once more, the finite string tension that we find in the strong cou-
pling limit does not imply that there is one in the continuum limit because

lim
a→0

a2σ = finite, (5.113)

and therefore σ diverges in the continuum limit.
These two simple examples show that the strong coupling analysis gets all the

qualitative behaviour right, but there is no continuum limit in this approximation. We
will see that a continuum limit can be shown to exist in the opposite extreme of small
coupling, as expected from perturbative renormalizability.

5.5 Weak coupling expansion

Perturbatively we know that Yang-Mills theories are renormalizable and this, according
to Wilson’s renormalization group, implies that a continuum limit can be defined in
lattice perturbation theory.

On the lattice, the weak coupling expansion corresponds to a saddle-point ex-
pansion around the configurations with vanishing action. We have seen that these
correspond to all plaquettes being the identity:

Up = 1. (5.114)

These in turn are pure gauge configurations that are gauge equivalent to the configu-
ration with all links set to the identity:

Uµ(x) = 1. (5.115)

Near this configuration, a convenient parametrization of the link variables is the ex-
ponential mapping

Uµ(x) = exp
(
−ig0aT

aAa
µ(x)

)
, (5.116)

but it is necessary to fix the gauge if we are going to integrate over unbounded gauge
fields Aa

µ, just as in the continuum.

5.5.1 Gauge Fixing

The gauge fixing procedure on the lattice follows closely that in the continuum.

1) Choose a gauge fixing condition such as

G[U ] = 0. (5.117)

The gauge-fixing functional G[U ] is a function of the link variables and it is well
defined for U near the identity. It must also satisfy that for any U near the identify,
there is one and only one gauge transformation g such that

G[Ug] = 0. (5.118)
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2) Include the gauge fixing in the path integral by
∫

dUe−S[U ] =

∫
dΩ

∫
dUe−S[U ]δ(G[UΩ])∆[U ], (5.119)

where

∆[U ]−1 ≡
∫

dΩδ(G[UΩ]), (5.120)

which is gauge invariant. Using the invariance of the measure, dU , it is easy to
see that the integrand of eq. (5.119) does not depend on Ω and since the integral∫
dΩ = 1, we have

∫
dUe−S[U ] =

∫
dUe−S[U ]δ(G[U ])∆[U ]. (5.121)

3) Rewrite the operator ∆[U ] as a local ghost contribution using the Faddeev-Popov
trick (Peskin and Schroeder, 1995). For any configuration U , let Ω0(U) be the
gauge transformation that satisfies

G[UΩ0(U)] = 0. (5.122)

Consider an infinitesimal gauge transformation, Ωε = exp(iεaT a):

G[UΩ0(U)Ωε ] = G[UΩ0(U)] +
∂Ga[UΩ0(U)Ωε ]

∂εb

∣∣∣∣
ε=0

εb + ... ≡ Mab[U ]εb + ...(5.123)

If det(M [U ]) .= 0, we can restrict the Ω integration in eq. (5.120) to the neigh-
bourhood of Ω0

∆[U ]−1 =

∫
dΩδ(G[UΩ]) =

∫
dεδ(M [U ]ε) =

1

det(M [U ])
. (5.124)

The determinant can now be included as an integral over Grassmann variables,
or ghost fields

∆[U ] =

∫
dc̄dc e−SFP [c,c̄,U ], SFP [c, c̄, U ] ≡ c̄aMab[U ]cc. (5.125)

This the Faddeev-Popov term.
4) Rewrite the delta function as a Gaussian integral.

Consider a different gauge fixing functional G′[U ] = G[U ] + kaT a, with ka some
constants. Since M ′[U ] = M [U ], ∆[U ] is the same and the partition function does
not depend on ka. We can therefore integrate over them with a gaussian weight

Z ∼
∫ ∏

a

dkae
− 1

2α

∑
a
k2
a

∫
dc̄dcdUe−S[U ]−SFP [c,c̄,U ] δ(G(U) + k)

=

∫
dc̄dcdU e−S[U ]−SFP [c,c̄,U ]− 1

2α

∑
a
Ga(U)Ga(U). (5.126)

This is the starting point of lattice perturbation theory.
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A commonly used gauge is the Lorentz gauge:

G[U ] =
∑

µ

∂̂∗µAµ(x), (5.127)

where the field Aµ is defined via the exponential mapping eq. (5.116).
The last ingredient that we should specify is the measure for the exponential map-

ping. It can be shown that the Haar measure for each of the link variables can be
written as

dU =
∏

x,µ

dUµ(x) =
∏

x,µ

exp

(
−Tr

[
ln

(
2

ω
sinh

(ω
2

))])
dAµ (5.128)

with

ω(U)ab ≡ g0fabcA
c
µ(x), (5.129)

and fabc are the structure constants of the group, satisfying

[T a, T b] = ifabcT
c. (5.130)

Exercise 4.5 Show the following properties for SU(N).

• Let U(α) ≡ exp(iαaT a). For λ a real number, define

R(λ)ab ≡ 2Tr
[
U(λα)T aU †(λα)T b

]
. (5.131)

Show that R(λ) satisfies the following differential equation

∂R

∂λ
= −iα̂R α̂ ≡ αat

a (ta)bc = −ifabc, (5.132)

and therefore that R(1) = exp(−iα̂).
• Next define

M(λ) ≡ U(λα)U †(λ(α + ε)). (5.133)

Neglecting terms of O(ε2) show that

∂M

∂λ
= −iεaRab(λ)T

b +O(ε2), (5.134)

and that this implies

M(1) = 1− iεa
(
1− ε−iα̂

iα̂

)

ab

T b + ... (5.135)
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• Show that the previous results imply (X,Y ∈ su(n)):

(eiXY e−iX)a = Y b(e−iX̂)ba (5.136)

eiX∂ae
−iX = −i

(
1− e−iX̂

iX̂

)

ab

T b. (5.137)

• Use these properties to show that the Haar measure for the exponential
coordinates, αa, can be written as

dU = exp

(
Tr

[
ln

(
2

α̂
sin(α̂/2)

)])∏

a

dαa (5.138)

• Show that in SU(N), for Uµ = exp(−ig0Aµ) and for the Lorentz gauge

G[U ] = g0
∑

µ

∂̂∗µAµ(x) (5.139)

the operator M that enters in the ghost action is

M(U) = ∂̂∗µ

{
ig0Âµ

(1− exp(+ig0Âµ)
∂̂µ − ig0Âµ

}
(5.140)

where Âµ ≡ Aa
µt

a.

5.5.2 Feynman rules

The derivation of the Feynman rules for the gauge-fixed lattice action

SGF [c, c̄, U ] = S[U ] + SFP [c, c̄, U ] +
1

2α

∑

a

Ga(U)Ga(U) (5.141)

is conceptually straightforward but quite complicated! As usual we go over to mo-
mentum space and assign the gauge potential, defined from the exponential map,
eq. (5.116) to the points in the middle of the link x+ µ̂a/2:

Aµ(p) = a4
∑

x

eip(x+a µ̂
2 )Aµ(x). (5.142)

The leading contribution O(g00) is only quadratic in the fields. The gauge part is:

S(0)[U ] =
1

2

∫

BZ

d4k

(2π)4
Aa

µ(−k)e
ikµa

2

(
δµν k̂

2 − (1− α)k̂µk̂ν
)
e

−ikνa
2 Aν(k),(5.143)

with

k̂µ =
2

a
sin

(
kµa

2

)
k̂2 =

∑

µ

k̂2µ. (5.144)

The corresponding Feynman rules for the gauge and ghost propagators are:
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− δab

k̂2

[
δµν − (1− α) k̂µk̂ν

k̂2

]
,

δab

k̂2
.

At higher order in g0 there are diagrams that have continuum analogs, such as:

,

and some more that do not appear in the continuum, such as a gluon mass term
or a two-gluon-two-ghost vertex:

−(2π)4 Ng2
0

12a2 δabδµν ,

For more details see (Rothe, 2005).
At one loop one can explicitely check renormalizability. By power-counting we

expect that only the 2, 3 and 4 vertex functions are divergent in the continuum limit

and one can show that the divergence in Γ(2)
µν;ab can be reabsorbed in a field redefinition

Z1/2AµR = Aµ, (5.145)

while the divergences in 3 and 4-point vertex functions are related by gauge-invariance
and can be reabsorbed in a redefinition of the coupling

ZggR = g0. (5.146)

A large number of seemingly miraculous cancellations take place, ensuring the absence
of disastrous contributions, such as a gluon mass term or Lorentz-non-invariant coun-
terterms. The miracle can be shown to occur to all orders by realizing that there is an
exact BRST invariance satisfied also on the lattice. I refer to the lectures of P. Weisz
for further details (Weisz, 2009).

There seems to be a continuum limit in perturbation theory, but we still do not
know if this perturbative analysis provides a solid proof of renormalizability.

We can look at the Callan-Symanzik equations to understand the gauge coupling
flow as we approach the continuum limit. Let us consider the momentum subtraction
scheme:

Γ(2)(k)|k2=µ2 = tree− level

Γ(4)(k1, k2, k3)|kikj= 1
2 (3δij−1)µ2 = tree− level, (5.147)
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where µa 0 1. From these two conditions the renormalized coupling is found to be:

g2R(µ) = g20

(
1−

g20
16π2

11Nc

3
(ln(a2µ2) + c′)

)
. (5.148)

As we approach the continuum limit we must tune the coupling g0(a) so as to keep
the physical coupling fixed. Neglecting scaling violations O(µa) we have the following
RG equation:

β(g0) ≡ −a
∂g0
∂a

∣∣∣∣
gR fixed

= −β0g30 − β1g
5
0 + ... (5.149)

where β0,β1 are universal (ie. do not depend on the regularization scheme). For SU(3):

β0 =
11

16π2
> 0, β1 =

102

(16π2)2
. (5.150)

This equation shows that g0 decreases as we approach the continuum limit, so per-
turbation theory becomes more accurate as we approach this limit. In fact g0 = 0 is
a zero of the β function, i.e. an UV fixed point, therefore our target continuum limit
corresponds to g0 = 0. Therefore the perturbative analysis of renormalizability is per-
fectly justified. Note that this would not be the case if the fixed-point would occur at
a different value of g0.

We can integrate the RG equation to get

a = c exp

(
−1

2β0g20

)
(g20)

−
β1
2β2

0 , (5.151)

where c is a constant of integration and does not depend on a, even though it has
the same dimensions. It is common practice to define a Λ parameter in terms of this
constant

aΛ ≡ exp

(
−1

2β0g20

)
(β0g

2
0)

−β1
2β2

0 , (5.152)

which remains constant in the continuum limit. All scales should be proportional to
Λ as we approach the continuum limit. It can therefore be taken as a reference scale,
although it should always be remembered that this scale depends on the regularization
scheme.

5.6 Topological charge

SU(3) gauge fields in the continuum fall into distinct topological sectors labelled by
the integer

Q = −
1

32π2

∫
d4x εµνρσ Tr [FµνFρσ] , (5.153)

called topological charge or instanton number.
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That configurations with Q .= 0 exist and are important for physics was under-
stood when classical (i.e. finite action) solutions where found with Q = 1 (instantons)
(Belavin, Polyakov, Schwartz and Tyupkin, 1975). They are believed to play an im-
portant role (’t Hooft, 1976; Witten, 1979; Veneziano, 1979) in several fundamental
problems such as the

• UA(1) problem in QCD
• Violation of B + L in the Standard Model (where B is baryon number and L is
lepton number)

Consider a continuum gauge field in a box of size T × L3, with the following
boundary conditions (periodicity up to a gauge transformation):

Aµ(x)|xi=L = Aµ(x)|xi=0 , k̂ = 1, 2, 3

Aµ(x)|x0=T = Ω(x)Aµ(x)|x0=0 Ω
†(x) + iΩ(x)∂µΩ(x)

†, (5.154)

where Ω(x) is periodic in the spatial directions, that is, it is map of the 3-torus on
SU(3). Such functions fall in homotopy classes characterized by the winding number
of the map which coincides with Q.

If Q .= 0, no smooth gauge transformation g(x) exists such that

g(0,x) = I, g(T,x) = Ω(x), (5.155)

Otherwise, the winding could be gauged away, which must not be possible, since Q is
gauge invariant.

Example: Let us consider the simpler case of U(1) in 2D. Let us consider the
function Ω that maps the circle, T 1 into U(1):

Ω : T1 → U(1) (5.156)

x → ei2π
x
L q (5.157)

The topological charge in 2D is given by

Q = −
1

2π

∫
d2x

∑

µ<ν

εµνFµν =
i

2π

∫ L

0
dxΩ∂xΩ

† = q, (5.158)

where we have used eq. (5.154).

Exercise 4.6 A geometrical definition of topological charge in compact U(1) in
two dimensions. Consider the following local quantity

qn =
−i

2π

∑

µ<ν

εµν lnUµν(n), (5.159)

and its global sum:
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Q =
∑

n

qn (5.160)

in a periodic lattice. Check that qn is gauge invariant. Show that Q is an integer. Show
that its naive continuum limit is the 2D topological charge.

Is there topology in the lattice formulation ? If for example we have the lattice
boundary conditions

Uk(x)|x0=T = Ω(x) Uk(x)|x0=0 Ω(x+ ak̂)†, (5.161)

it is obvious that Ω can be gauged away by changing the temporal link variables at
the border as

U ′
0(x, T − a) = U0(x, T − a)Ω†(x), (5.162)

which does not change the measure dU ′
0 = dU0. Does this mean that we are missing

Q .= 0 configurations on the lattice ?
No, it means that all topological sectors correspond to periodic boundary con-

ditions, and that all are connected by lattice gauge transformations. However, the
configurations at the boundaries between the different topological sectors do not have
a continuum limit, i.e. they become singular in the continuum limit, so there is no
contradiction.

For some purposes it might be useful to define an integer topological charge also
at finite a. This can be done in various ways, for example:

• Geometrical definition (Lüscher, 1982). A local density q(x) can be defined with
the following properties

∑

x

q(x) ∈ Z lim
a→0

q(x) = −
1

32π2

∫
d4xTr

[
F̃µνFµν

]
. (5.163)

One can also show that Q does not change if a gauge-invariant constraint is set
on the plaquettes Tr[Up] ≥ 1− ε.

• Fermionic zero modes. The index theorem (Atiyah and Singer, 1971) establishes
the following relation:

Q = nR − nL, (5.164)

where nR/L are the righ-handed/left-handed zero modes of the Dirac operator on
the background gauge configuration with charge Q. Lattice fermions that satisfy
a chiral symmetry at finite a such as Ginsparg-Wilson fermions allow to define
a topological charge from the number of zero modes (Hasenfratz, Laliena and
Niedermayer, 1998).
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The original investigation on lattice field theory was motivated by the need to make
predictions in QCD. There is by now little doubt that QCD is the right theory of the
strong interactions. It is an SU(3) gauge theory, with six flavours of quarks in the
fundamental representation. The Euclidean action in the continuum is

SQCD =

∫
d4x

∑

q

ψ̄q(γµDµ +mq)ψq −
1

2g20
Tr[FµνFµν ], (6.1)

which has therefore seven free parameters: the gauge coupling and six quark masses.
Let us review briefly the main properties of QCD.

• Symmetries. At the classical level the symmetries of this action are
- Lorentz invariance
- SU(3) gauge invariance
- Discrete symmetries: C, P and T
- Quark number: ψq → eiαqψq

In the absence of quark masses, there is a much larger global symmetry group
which is a chiral U(6)L × U(6)R:

PRψ → URPRψ PLψ → ULPLψ UR, UL ∈ U(6), (6.2)

where ψ = (ψu,ψd,ψd, ..).
• Spontaneous chiral symmetry breaking
The chiral flavour group is believed to be broken to U(6)V spontaneously by a
quark condensate

−〈ψ̄iψj〉 .= Σδij , (6.3)

which is only invariant under UR = UL = UV .
• Anomalous breaking of UA(1)
The U(1)A is broken by a different mechanism: via an anomaly. Indeed, even if
there is no symmetry breaking by the vacuum or by the explicit mass terms, the
current associated with this symmetry is not conserved. According to the Noether
theorem, the axial current

J5
µ =

∑

q

ψ̄qγµγ5ψq (6.4)
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should be conserved. However a one loop computation (Adler and Bardeen, 1969)
shows that

∂µJ
5
µ =

g20
16π2

εαβγδTr[FαβFγδ], (6.5)

while the vector current is of course conserved. We identify the topological charge
on the right-hand side!

The spontaneous breaking of a global symmetry implies the presence of as many
Nambu-Goldstone (Nambu, 1960; Goldstone, 1961) massless particles, as broken gen-
erators: the generators of the SU(6) axial rotations (since UA(1) is not broken spon-
taneously).

In reality quark masses are not zero. They are plotted in a logarithmic scale in
Fig. 6.1, where we see that they encompass five orders of magnitude. Compared to
the mass gap of the pure gauge theory, ∼ 1GeV , there are three quarks: u, d, s that
can be considered light, while other three c, b, t are heavy. Therefore the approximate
flavour symmetry in the presence of quark masses is at most SU(3) and not SU(6). We
expect therefore that the spontaneous symmetry breaking results in eight lighter states
corresponding to the Nambu-Goldstone bosons, which have the quantum numbers
of the pseudoscalar mesons. Indeed the lightest excitations in QCD are the octet
of pseudoscalar mesons: π±,π0,K±,K0, K̄0, η. The η′, being the mode associated to
U(1)A, is significantly more massive, because it is not a Nambu-Goldstone boson.

Witten and Veneziano (Witten, 1979; Veneziano, 1979) got a prediction for the
mass of this special meson in the large Nc limit:

F 2
πm

2
η′

2Nf
= χtop ≡

∫
d4x〈Q(x)Q(0)〉, Q ≡

g20
32π2

εαβγδTr[FαβFγδ]. (6.6)

The η′ mass can then be determined from a purely gauge observable, such as the
topological susceptibility, which in the large Nc limit can be determined in the pure
gauge theory!

QCD is a renormalizable theory, but perturbation theory does not provide a good
description of its phenomenology at large distances or low energies, because the theory
is strongly interacting. Indeed the main features of QCD that determine to a large
extent its phenomenology are intrinsically non-perturbative: mass gap, confinement,
spontaneous chiral symmetry breaking, anomalous currents, etc. Obviously the goal
of a non-perturbative approach to QCD would be to understand from first principles
all these phenomena, and to provide an accurate description of QCD phenomenology,
such as the hadron spectrum and other properties.

Even though in most cases these would be postdictions, it is nevertheless extremely
important to finalize with success this longterm project for several reasons:

• The flavour sector of the SM is poorly understood, and it is rather generic that
models beyond the SM induce non-standard effects in flavour violating processes
in the quark sector. Having precise predictions in the SM is therefore indispensable
to search for such non-standard effects.
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Fig. 6.1 Quark masses.

• It would allow to study QCD at high density and temperature, conditions of the
early universe and of very dense systems such as neutron stars, that are not easy
to reproduce in the laboratory. We refer to the lectures by U. Philipsen (Philipsen,
2009).

• QCD is in some sense a model field theory for many extensions of the SM, as well
as for the lattice approach. In QCD we know where the UV fixed point lies so we
know where the continuum limit is and how to approach it. The lattice method
might be necessary to study other field theories, such as technicolor models or
theories with dynamical gauge symmetry breaking, where things might not be as
easy. Clearly having solved QCD is a benchmark to guide future investigations.

Giving the spread of quark masses that span six orders of magnitude, dealing with
all quarks in a lattice simulation is very difficult since approaching the continuum limit
in controlled conditions requires

amq 0 1, (6.7)

and therefore extremely fine lattices. This brute force approach is not practical. For-
tunately, when we try to describe the low energy regime, the effect of the heavy
quarks can be accurately described by an effective theory that results from integrating
them out. A consequence of the decoupling theorem (Appelquist and Carazzone, 1975)
(which is another realization of Wilsonian renormalization group) is that the effects of
the heavy quarks in the low-energy dynamics are well represented by local operators
of the light fields only (gluons and the lighter quarks). The effect of the heavy scales
is reabsorbed in the couplings. This implies that in order to study hadron processes
at energies much lower than the heavy quark mass scales, we can simply ignore the
heavy quarks.

We are also interested however in processes involving heavy hadrons. A way to
do this is to consider them as static sources, as is done in the heavy quark effective
theory. I refer to R. Sommer’s lectures (Sommer, 2009) for a detailed discussion of this
effective theory as an efficient tool to study heavy flavours on the lattice.

6.1 Wilson formulation of Lattice QCD

By now, it should be clear how to discretize this action following for example the
Wilson approach
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SQCD[U, ψ̄,ψ] = S[U ] + SW [U, ψ̄,ψ] (6.8)

where S[U ] is the plaquette action of eq. (5.39) and SW [U, ψ̄,ψ] is the Wilson action
for each of the quark fields:

SW [U, ψ̄,ψ] = a4
∑

q,x

ψ̄q [DW +mq]ψq, (6.9)

where the Wilson operator is

DW ≡
1

2

(
γµ(∇µ +∇∗

µ)− ar∇∗
µ∇µ

)
(6.10)

and

∇µψ(x) =
1

a
[Uµ(x)ψ(x + aµ̂)− ψ(x)] ,

∇∗
µψ(x) =

1

a

[
ψ(x) − Uµ(x− aµ̂)†ψ(x− µ̂)

]
. (6.11)

It is common practice to rewrite the fermionic action in terms of the parameter κ:

SW = a4
{
∑

q,x

ψ̄q(x)

[
mq +

4r

a

]
ψq(x) +

1

2a

∑

q,x,µ

ψ̄q(x) (γµ − r)Uµ(x)ψq(x+ aµ̂)

− ψ̄q(x) (γµ + r)U †
µ(x− aµ̂)ψq(x− aµ̂)

}
. (6.12)

The action can be rewritten as

SW = a4
∑

q,x

ψ̄q(x)ψq(x) − κq
∑

q,x,µ

(
ψ̄q(x)(γµ − r)Uµ(x)ψq(x+ aµ̂)

+ ψ̄q(x)(γµ + r)U †
µ(x− aµ̂)ψq(x − aµ̂)

)
, (6.13)

where we have introduced the kappa parameter:

κq ≡
1

2amq + 8r
. (6.14)

In the free case, the massless limit corresponds to the critical value κc =
1
8r .

The measures over the gauge links and the Grassmann variables are the same as
defined before and therefore the partition function is

Z =

∫
dUdψ̄dψe−SQCD[U,ψ̄,ψ] =

∫
dUZF [U ]e−Sg[U ] (6.15)

where
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ZF [U ] ≡
∫

dψ̄dψe−SW [U,ψ̄,ψ]. (6.16)

Since the action is quadratic in the fermion fields, the integration over the Grassmann
fields can be performed analytically giving

ZF [U ] =
∏

q

det (DW +mq) . (6.17)

For sufficiently large mq, the det() factors are positive, so they can be exponentiated
to a real contribution to the gauge action. The integral over the gauge degrees of
freedom can still be solved by importance-sampling methods. I refer to the lectures of
M. Lüscher for more details(Lüscher, 2009).

The integration over Grassmann variables can always be done analytically for any
correlation function involving fermion fields. For the quark propagator we have

〈ψα,i(x)ψ̄β,j(y)〉 = Z−1

∫
DU〈ψα,i(x)ψ̄β,j(y)〉F

∏

q

det (DW +mq) e−Sg[U ],(6.18)

where α,β and i, j are spin and flavour indices respectively, and

〈ψ(x)αiψ̄(y)βj〉F = ZF
−1
∫

D[ψ̄]D[ψ] ψ(x)αiψ̄(y)βje
−SF [U,ψ̄,ψ] = δij

[
(DW +mi)

−1
]αβ
xy

.

(6.19)

All fermion integrals result in products of propagators as expected from eq. (4.9).

6.1.1 Positivity of the transfer matrix and Hilbert space interpretation

The positivity of the transfer matrix, T̂ , can be proved from the results obtained for
the gauge fields and the free fermions. Indeed the transfer matrix can be written as

T̂ = T̂ 1/2
F T̂gT̂

1/2
F P̂phys, (6.20)

where T̂F is the transfer matrix for fermions, eq. (4.83), coupled to the gauge fields in
the temporal gauge. The positivity of T̂F which can be proved in completely analogy
with the free fermion case for r = 1. T̂g is the transfer operator for gauge fields,

eq. (5.76). The positivity of T̂ follows from that of T̂g and T̂F (Lüscher, 1977).

6.1.2 Perturbative expansion, renormalization and continuum limit

The perturbative expansion can be worked out like in the pure gauge theory. The
Feynman rules are supplemented by the fermion vertices with one, two and an arbi-
trary number of gluons. In the presence of fermions besides the 1PI divergent graphs
we considered in the pure gauge case, there is also the fermion two-point vertex graph.
A one loop computation shows that this divergence can be reabsorbed in a redefi-
nition of the fermion mass and wave function, in agreement with the expectation of
renormalizability.
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On general grounds, we know that in order to warrant that we approach the con-
tinuum limit we should make sure that the symmetries are those of the QCD action.
It is easy to check that the lattice action is invariant under C, P and T . It is also
invariant under the flavour vector symmetries in the limit mq = 0. However all ax-
ial symmetries are broken by the Wilson term. The question is then: what are the
additional relevant or marginal operators that can appear in the continuum limit ?
The only renormalizable operator that can be induced as a result of chiral symmetry
breaking is of the form ψ̄ψ. It is indeed a relevant operator which is generated with a
coefficient 1

a and needs to be tuned, just as the mass of the scalar needed to be tuned
to reach the critical line. Therefore the continuum limit of this action even for massless
fermions requires a more complicated tuning:

g0 → 0, κq → κqc . (6.21)

The theory is asymptotically free just like the pure gauge theory.
A very useful procedure to define the massless point, beyond perturbation theory,

is to impose the PCAC relation.

6.1.3 Lattice symmetries and scaling violations

We have seen that the Wilson term breaks chiral symmetry, and in QCD the full
chiral flavour symmetry group. This is in principle a disaster, because the low-energy
properties of QCD depend in a strong way on the fact that this symmetry is broken
only spontaneously as we discussed. It is therefore essential to make sure that the
continuum limit is taken in such a way that QCD is recovered. The symmetries in
the functional formalism result in a series of Ward-identities (WI), as we discussed in
sec. 2.5. Therefore a way to ensure that the symmetry is recovered in the continuum
limit is to ensure that renormalized Ward identities are satisfied up to terms that
vanish in the continuum limit.

Bochicchio et al. studied for the first time how the chiral WI is recovered in the
continuum limit of Wilson fermions (Bochicchio et al., 1985). To derive the WI’s we
consider the following non-singlet transformation (Tr[T a] = 0)

δψ(x) → iεa(x)T
aγ5ψ(x),

δψ̄(x) → iεa(x)ψ̄(x)T
aγ5. (6.22)

Performing such a change of variables in the expectation value of the operator O we
get:

〈δεSW O〉 = 〈δεO〉, (6.23)

where

δεSW = a4
∑

x

εa(x)

{
iψ̄(x)γ5{M,T a}ψ(x)− i

∑

µ

∂̂∗µA
a
µ(x) + iXa(x)

}
, (6.24)

and

Xa(x) = −
r

2a

∑

µ

[
ψ̄(x)T aγ5Uµ(x)ψ(x + aµ̂) + ψ̄(x)T aγ5U

†
µ(x− aµ̂)ψ(x − aµ̂)
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+ψ̄(x− aµ̂)Uµ(x − aµ̂)T aγ5ψ(x) + ψ̄(x+ aµ̂)U †
µ(x)T

aγ5ψ(x)

− 4ψ̄(x)T aγ5ψ(x)
]
= δε(Wilson term). (6.25)

and

Aa
µ(x) ≡

1

2

[
ψ̄(x)γµγ5T

aUµ(x)ψ(x + aµ̂) + ψ̄(x+ aµ̂)γµγ5T
aU †

µ(x)ψ(x)
]
. (6.26)

M is the quark mass matrix. In the naive continuum limit, we find that Xa → 0, while
Aµ(x) goes to the continuum axial current.

So the WI on the lattice reads:

〈O(y)∂̂∗µA
a
µ(x)〉 = 〈O(y)ψ̄(x)γ5{M,T a}ψ(x)〉 + 〈O(y)Xa(x)〉 − i

〈
δO(y)

δεa(x)

〉
.(6.27)

The anomalous term, Xa, even though vanishing in the naive continuum limit will
generate divergences that need to be renormalized. Being a local operator of d = 5
will generically mix with the operators ∂̂∗µAµ and with the pseudoscalar density P a =
ψ̄(x)T aγ5ψ(x), so in general

Xa = −2m̄P a − (ZA − 1)∂̂∗µAµ +Xa
R, (6.28)

where the last term is a renormalized operator that vanishes in the continuum limit and
m̄ and ZA − 1 are the mixing coefficients of Xa with the lower dimensional operators.
m̄ ∼ a−1, while ZA can be shown to be finite. Therefore

lim
a→0

〈O(y)ZA∂
∗
µA

a
µ〉 = lim

a→0
〈O(y)ψ̄(x)γ5{M − m̄, T a}ψ(x)〉 − i

〈
δO(y)

δεa(x)

〉
.(6.29)

In the continuum limit we recover the standard chiral WI, with the lattice current
normalized by ZA and the quark mass is proportional to M−m̄. In general the scaling
violations are O(a), however the improvement program described in (Weisz, 2009)
allows to reach O(a2).

In summary, the consequence of the explicit chiral symmetry breaking by the Wil-
son term is twofold:

• The bare mass M needs to be tuned non-perturbatively to fix the quark mass, for
example, the so-called PCAC quark mass can be obtained from the ratio (up to
a multiplicative renormalization)

〈∂̂∗µAa
µ(x)P

a(0)〉
〈P a(x)P a(0)〉

∼ mPCAC . (6.30)

• The axial current is renormalized. For a method to determine ZA non-perturbatively
and further details on the uses of WIs see the lectures of P. Weisz (Weisz, 2009)
and A. Vladikas(Vladikas, 2009).
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Exercise 5.1 Show that the Wilson action for QCD has the following discrete
symmetries

P : ψ(x) → γ0ψ(xP ) (6.31)

ψ̄(x) → ψ̄(xP )γ0 (6.32)

U0 → U0(xP ) (6.33)

Uk → U †
k(xP − ak̂) (6.34)

T : ψ(x) → γ0γ5ψ(xT ) (6.35)

ψ̄(x) → ψ̄(xT )γ5γ0 (6.36)

U0 → U †
0 (xT − a0̂) (6.37)

Uk → Uk(xT ) (6.38)

C : ψ(x) → Cψ̄T (x) (6.39)

ψ̄(x) → −ψT (x)C−1 (6.40)

Uµ → U∗
µ (6.41)

where xP = (x0,−x), xT = (−x0,x) and C = γ0γ2, satisfying CγµC = −γ∗µ = −γTµ .
Exercise 5.2 Show that the Wilson action for QCD is invariant under global
UV (Nf ) in the quark mass degenerate limit

q → Uq q̄f → q̄U † U ∈ U(Nf ). (6.42)

Derive the lattice WI for the UV (Nf ) symmetry and identify the conserved vector
current.

6.2 Observables

We will briefly discuss a few of the observables that are routinely measured in lattice
QCD. The first important question is of course the low-lying spectrum. Computing
the meson and baryon masses requires the computation of two-point correlators of
appropriate operators. The Källen-Lehmann representation implies that the large time
behaviour of these two point functions are dominated by the lightest one-particle states
with the same quantum numbers.

How do we choose the operator ? We have seen, from the transfer matrix construc-
tion that operators with a Hilbert interpretations are products of the fundamental
fields ψ, ψ̄ and the spatial plaquettes at fixed times. In principle any operator in the
Hilbert space can be represented by creation and annihilation operators that create the
one-particle asymptotic states in the interacting theory. Ensuring that the quantum
numbers are the right ones (spin, color, isospin, parity, etc) the operator will generi-
cally have an overlap with the one-particle states. Obviously we do not know a priori
which operator maximizes this overlap and there are several techniques to improve it
(variational techniques, smearing, etc), which we will not discuss here.
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Fig. 6.2 Connected and disconnected contribution to a meson correlator

6.2.1 Mesons

The simplest operators that are used to compute meson correlation functions are of
the form:

Ma(x) ≡ ψ̄αic(x)ΓαβT
a
ijψβjc(x), (6.43)

where

Γ = {1, γ5, γµ, γµγ5, ...} (6.44)

for the scalar, axial, vector and axial vector...T a is a matrix in flavour space and the
color indices are summed over since a meson is a singlet of colour. The proper choice
of the matrix T a ensures the right flavour composition or isospin (or SU(3)) flavour
quantum numbers. In order to improve the signal it is common practice to project on
the zero spatial momentum states by computing the correlator

CM (x0) =
∑

x

〈Ma(x0,x)M
a(0,0)〉. (6.45)

As usual the Grassmann integrations can be readily performed and the result is

CM (x0) =
1

Z[0]

∫
DUe−Sg[U ] det(DW +M)

∑

x{
−Tr[(DW +M)−1

0,x(Γ⊗ T a)(DW +M)−1
x,0(Γ⊗ T b)]

+ Tr[(DW +M)−1
0,0(Γ⊗ T a)]Tr[(DW +M)−1

x,x(Γ⊗ T b)]
}
. (6.46)

The two terms correspond to the connected and disconnected contributions, shown in
Fig. 6.2. The latter are much harder to compute numerically because the sum over x
would require the inversion of the Dirac operator as many times as there are spatial
points, while the connected contribution can be obtained with a single inversion per
spin and colour.

6.2.2 Baryons

Baryons are qqq color singlets. We can take the following operators:

Babc
αβγ = ψ(x)α ≡ εc1c2c3ψαac1ψβbc2ψγcc3, (6.48)

where a, b, c are the flavour indices and α,β, γ the spinor ones. The contraction of this
three-quark object with appropriate tensors of both set of indices will ensure the right
flavour and spin respectively.



Decay constants: pion to vacuum matrix elements

For example, consider the proton, which is a J = 1/2, P = +1 and I = 1/2 state
made up of two u quarks and one d quark. In order to combine these three, we can
first combine the d and one u in a J = 0, I = 0 diquark state and then add the third
one. We need therefore to combine the u and d antisymmetrically both in flavour and
spin, obtaining

(uαdβ − dαuβ)(Cγ5)αβ , (6.49)

where Cγ5 ensures that the quark states with up and down spin are combined anti-
symmetrically and are therefore a singlet under rotations. Since Cγ5 is antisimmetric
the two terms are the same and the possible proton operator is given by

pγ = uγuαdβ(Cγ5)αβ = uTCγ5duγ , (6.50)

where the color indices are not shown but are contracted with the ε tensor.
The corresponding anti-proton is

p̄γ = d̄Cγ5ū
T ūγ . (6.51)

The two-point correlation functions of those operators at large x0 separation, are
dominated by the lightest one-particle state in the corresponding channel:

lim
x0→0

∑

x

〈B(x)B(0)〉 = lim
x0→0

∑

x

〈0|T (B̂(x)B̂(0))|0〉E =
ZL

2
(1 + γ0) e

−mLx0 ,(6.52)

where mL is the mass of the lightest state in this channel, |L〉, and ZL = |〈0|B̂(0)|L〉|2,
the vacuum-to-this-state matrix element.

Exercise 5.3 Write down an interpolating operator for the Ω baryon (JP = 3/2+)
made of three strange quarks and an interpolating operator for the ρ+ meson.

6.3 Decay constants: pion to vacuum matrix elements

A consequence of the chiral Ward indentity is the PCAC relation, ie. the coupling of
the axial current to the single pseudoscalar meson states, the lightest of them being the
pion |π〉. The corresponding matrix element is the decay constant. This is the matrix
element needed for determining the leptonic decays widths of pseudoscalar mesons,
from which several of the elements of the CKM matrix are best determined.

〈0|Aa
µ(x)|π(p)〉 = iFπpµe

−ipx. (6.53)

Therefore Fπ can be determined from the normalization of the axial-current two-point
correlator provided it is appropriately renormalized:
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− lim
x0→∞

Z2
A

∑

x

〈A0(x)A0(0)〉 =
F 2
πMπ

2
exp(−Mπx0). (6.54)

An essential requirement is therefore to obtain ZA. I refer to P. Weisz’s (?) and
A. Vladikas’s lectures (Vladikas, 2009).

6.4 Form factors: single state matrix elements of current operators

In order to describe other processes, such as meson semileptonic decays in which a
meson decays into a lighter one emiting two leptons, e.g. B → πlνl (important in
the determination of Vub) we need to know the matrix element of the weak current
between the two initial and final meson states.

〈M |q̄T aγµ(1− γ5)q|M ′〉, (6.55)

where the flavour quantum numbers of M,M ′ and T a should be appropriately fixed for
the given process. According to the LSZ reduction formulae, this matrix element can
be obtained from the expectation value of the time ordered product of three operators:
the vector current and the two operators that have an overlap with the initial and final
meson states,

lim
x0,y0→+∞,−∞

∑

x,y

〈Ma(x)Jb
µ(0)M

c(y)〉. (6.56)

In contrast with two point functions that depend on a single momentum, the three-
point functions depend on two and therefore the matrix element has a non-trivial
momentum dependence dictated by Lorentz invariance such as:

〈π(p)|Jµ(q)|B(p′)〉 = f+(q2)

[
p′ + p−

m2
B −m2

π

q2
q

]

µ

+ f0(q2)
m2

B −m2
π

q2
qµ. (6.57)

The coefficients f+(q2), f0(q2) are called form factors and in principle they must be
determined in the whole kinematical range of q2.

6.5 Two-body decays

Other processes such as K → ππ, ρ → ππ, etc involve also three-point functions. How-
ever their large time behaviour does not contain sufficient information to reconstruct
the corresponding S-matrix element (Maiani and Testa, 1990). A similar problem af-
fects other scattering processes.

It is important to point out that there is nothing wrong with LSZ reduction for-
mula on the Euclidean infinite lattice(Lüscher, 1988). Any S-matrix element can be
computed by:

• computing the connected Euclidean correlation functions in momentum space

∑

xn

...
∑

x1

e−iq1x1 ...e−iqnxn〈O(x1)....O(xn)〉 = Sn(q1, ..., qn), (6.58)
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• Wick rotating them back to Minkowski:

Wn(E1, ...En) = Sn(q1, ..., qn)|q0i=(i−ε)Ei
. (6.59)

• The S-matrix element is the given by

〈p3, ...,pn; out|p1p2〉 =
∏

k

(E2
k − ω(pk))√

Zk
Wn

∣∣∣∣∣
Ei=±ω(pi)

. (6.60)

This method is however numerically hopeless. There are smarter ways to go around,
by using finite-size scaling techniques. QCD in a box is a wonderfull laboratory from
which physical information can be extracted. A few examples of the uses of a finite
volume are

• Finite-size dependence of one particle masses is related to the forward elastic
scattering amplitude (Lüscher, 1983; Lüscher, 1986a)

• Two particle spectra in a box is related to the scattering phase shifts and unstable
particle widths(Lüscher, 1986b). See the lectures of S. Aoki (Aoki, 2009) were some
applications are discussed.

• The Nambu-Goldstone bosons in a box behave in a way that can be predicted by
Chiral Perturbation Theory and provides a different regime to match QCD with
the chiral Lagrangian: the so-called ε-regime (Gasser and Leutwyler, 1987)

• Non-perturbative renormalization: the renormalization scale is set by the box size
(Jansen et al., 1996). See the lectures of (Weisz, 2009).

and the list is probably not exhausted...
An important message is that in lattice QCD simulations the optimal conditions

to extract physical parameters are not necessarily the same conditions as in real ex-
periments. We surely need to prove the universality of our results by taking the limit
a → 0, but we should also exploit as much as possible the possibilities that the lat-
tice offers of probing QCD in new conditions (unphysical quark masses, finite volume,
etc...)
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