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What is an anomaly?
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In certain situations, some symmetries/invariances of the classical theory can be 
incompatible with the quantization procedure

In those cases we say the theory has an ANOMALY, or that the symmetry/
invariance is ANOMALOUS.

The obvious example is scale invariance. E.g.
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1 Generalities about anomalies

1.1 What is an anomaly?

Symmetries are at the cornerstone of modern physics. It can be said that the success of particle
physics is mostly based on the implementation of the notion of symmetry1.

Despite of this, there are situations in Quantum Field Theory (QFT) in which classical
symmetries clash with the quantization procedure. When this happens, the corresponding
symmetry of the classical Lagrangian cannot be implemented in the quantum theory. One
says then that the symmetry is anomalous or that there is an anomaly associated with this
symmetry.

To get a flavor of what we mean by this, we look at what maybe is the most obvious example
of an anomaly in QFT. We consider a massless �4 theory in four dimensions,

S =

Z

d4x
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This classical action is invariant under scale transformations acting as

xµ ! ⇠xµ, �(x) ! ⇠�1�(⇠�1x). (1.2)

This simply reflects the fact that the theory does not have any dimensionfull parameter. A
mass term, for example, would break the invariance.

Quantizing the theory we find that some diagrams are divergent and need to be regularized.
After renormalization the coupling constant runs, i.e. its value depends on the scale of the
process under consideration. This is reflected in a nonvanishing beta function at one loop
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Here µ
0

is some reference scale at which the coupling constant takes the value �(µ
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).

1For the time being we include under the label of symmetry both standard symmetries and gauge invariance.
Later we will make a crucial distintion between them.
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The physics is the same at all scales.
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Upon quantization, however, we have divergences to deal with. For example,

12.3 The φ4 Theory: A Case Study 239

(12.31)

The factor of 1
2 is a symmetry factor. We can take advantage of the calculations made

in the previous section to isolate the divergent part of the diagram as d → 4

(12.32)

To cancel this divergence we add a counterterm − 1
2δm2φ2 to the Lagrangian density

where δm2 is given by

δm2 = − λm2

16π2

1
d − 4

. (12.33)

Adding this counterterm means to include in the Feynman rules a new vertex with
two external legs

(12.34)

Its contribution to the two point function to order λ exactly cancels the divergent part
of the one loop diagram (12.31). There is of course an ambiguity in the definition
of the counterterm because in addition to the pole we could also have subtracted a
finite part. For the time being, however, we choose not to do so.

The next divergent diagram in the φ4 theory comes from the one-loop calculation
of the four-point function. In fact there are three diagrams contributing at order λ2

(12.35)

The last two diagrams differ in a permutation of the momenta p3 and p4. Since
the corresponding legs are attached to different vertices the two diagrams are topo-
logically nonequivalent. Applying the Feynman rules listed above, we find that the
contribution of these three diagrams can be written as

(12.36)

The regularization of the integrals introduces an energy scale that leads to a 
running of the coupling:
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This quantum breaking of scale invariance is encoded in the beta function

�(�) =
3~�2
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Scale anomaly: a quantum 
mechanical toy model
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We illustrate scale anomaly with a quantum mechanical example:

Let us take the Hamiltonian

where the potential is a homogeneous function of degree −2

invariance for certain type of potentials. Let us consider the classical Hamiltonian of a particle
with mass M propagating in a potential V (r)

H =
p2

2M
+ V (r), (1.5)

and let us require the potential to be a homogeneous function of degree �2

V (�r) = ��2V (r). (1.6)

When this is the case, it is straightforward to see that the Hamilton equations
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are invariant under the scale transformation

t �! �2t,

r �! �r, (1.8)

p �! ��1p.

So far, our discussion has been valid for arbitrary dimensions. Let us consider first a two-
dimensional system. An obvious potential satisfying condition (1.6) is the two-dimensional
Dirac delta potential

V (r) = ↵ �(2)(r), (1.9)

with ↵ a real constant. At the classical level, there is no nontrivial scattering by this potential.
This is not the case in QM, where there is scattering due to the fact that the particle wave-
function extends to the origin and “feels” the potential (but only the s-wave). The Schödinger
equation for this problem reads
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 (r), (1.10)

where ~2k2 = 2ME, with E the energy of the particle. In momentum space is rewritten as
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whose general solution is
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We transform back to position spacewhere the superscript indicates respectively the outgoing and incoming solutions. We are
interested in the outgoing solution, which transforming back to position space reads
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Setting r = 0 in this equation leads to the consistency condition
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. (1.14)

The integral that appears on the right-hand side of Eq. (1.14) is logarithmicaly divergent
and need to be regularized. One way to proceed is by introducing a hard momentum cuto↵ ⇤
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In terms of this, the value of the wave function at the origin is given by
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where we have written the result in terms of the particle energy. Substituting this into the
solution to the Schrödinger equation (1.13) we arrive at

 (+)(r) = e�ik·r/~ � 1
1

2M↵
+ 1

4⇡
log

�

� ⇤

2~2

2ME

�

Z

d2p

(2⇡)2
e�ip·r/~

p2 � k2 � i✏
. (1.17)

The integral on the right-hand side of this equation can be computed in terms of Hankel
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Using the asymptotic expansion of the Hankel function for large values of the argument
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we have the asymptotic expansion of the outgoing wave function for large values of |r|
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To obtain the spectrum of the theory, we set r = 0 to obtain the consistency 
condition

where the superscript indicates respectively the outgoing and incoming solutions. We are
interested in the outgoing solution, which transforming back to position space reads

 (+)(r) = e�ik·r � 2M↵ (±)(0)

Z

d2p

(2⇡)2
e�ip·r/~

p2 � k2 � i✏
. (1.13)

Setting r = 0 in this equation leads to the consistency condition

 (+)(0) = 1 � 2M↵ (±)(0)

Z

d2p

(2⇡)2
1

p2 � k2 � i✏
. (1.14)

The integral that appears on the right-hand side of Eq. (1.14) is logarithmicaly divergent
and need to be regularized. One way to proceed is by introducing a hard momentum cuto↵ ⇤

Z

d2p

(2⇡)2
1

p2 � k2 � i✏
=

1

2⇡

Z

⇤

0

pdp

p2 � k2 � i✏

=
1

4⇡
log

✓

�⇤2

k2

◆

. (1.15)

In terms of this, the value of the wave function at the origin is given by

 (+)(0) =
1

1 + 2M↵
4⇡

log
�

� ⇤

2~2

2ME

� , (1.16)

where we have written the result in terms of the particle energy. Substituting this into the
solution to the Schrödinger equation (1.13) we arrive at

 (+)(r) = e�ik·r/~ � 1
1

2M↵
+ 1

4⇡
log

�

� ⇤

2~2

2ME

�

Z

d2p

(2⇡)2
e�ip·r/~

p2 � k2 � i✏
. (1.17)

The integral on the right-hand side of this equation can be computed in terms of Hankel
functions to give

Z

d2p

(2⇡)2
e�ip·r/~

p2 � k2 � i✏
=

i

4
H

(1)

0

✓

kr

~

◆

. (1.18)

Using the asymptotic expansion of the Hankel function for large values of the argument

H
(1)

0

(z) ⇠
r

2

⇡z
eiz�

i⇡
4 , (1.19)

we have the asymptotic expansion of the outgoing wave function for large values of |r|

 (+)(r) ⇠ e�ik·r/~ � 1p
2⇡kr

ei
kr
~ +

i⇡
4

1

M↵
+ 1

2⇡
log

�

� ⇤

2~2

2ME

� . (1.20)

5

However, the integral is divergent. Using a hard momentum cutoff
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we have
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Using its asymptotic expansion for large arguments

we have (as |r| → ∞)
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Let us now compare our result

with the asymptotic for of the wave function for 2D scattering

where the superscript indicates respectively the outgoing and incoming solutions. We are
interested in the outgoing solution, which transforming back to position space reads

 (+)(r) = e�ik·r � 2M↵ (±)(0)

Z

d2p

(2⇡)2
e�ip·r/~

p2 � k2 � i✏
. (1.13)

Setting r = 0 in this equation leads to the consistency condition

 (+)(0) = 1 � 2M↵ (±)(0)

Z

d2p

(2⇡)2
1

p2 � k2 � i✏
. (1.14)

The integral that appears on the right-hand side of Eq. (1.14) is logarithmicaly divergent
and need to be regularized. One way to proceed is by introducing a hard momentum cuto↵ ⇤

Z

d2p

(2⇡)2
1

p2 � k2 � i✏
=

1

2⇡

Z

⇤

0

pdp

p2 � k2 � i✏

=
1

4⇡
log

✓

�⇤2

k2

◆

. (1.15)

In terms of this, the value of the wave function at the origin is given by

 (+)(0) =
1

1 + 2M↵
4⇡

log
�

� ⇤

2~2

2ME

� , (1.16)

where we have written the result in terms of the particle energy. Substituting this into the
solution to the Schrödinger equation (1.13) we arrive at

 (+)(r) = e�ik·r/~ � 1
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2ME

�

Z
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p2 � k2 � i✏
. (1.17)

The integral on the right-hand side of this equation can be computed in terms of Hankel
functions to give
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Using the asymptotic expansion of the Hankel function for large values of the argument
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(1)

0
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i⇡
4 , (1.19)

we have the asymptotic expansion of the outgoing wave function for large values of |r|

 (+)(r) ⇠ e�ik·r/~ � 1p
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5Taking into account now the general asymptotic form of the outgoing wave function at large
distances in two dimensions

 (+)(r) ⇠ eik·r/~ +
ei

kr
~ +

i⇡
4

p
r

f(✓), (1.21)

we identify the scattering function as

f(✓) = � 1p
2⇡k

1
1

M↵
+ 1

2⇡
log

�

� ⇤

2~2

2ME

� . (1.22)

First of all, the function is independent of the angle, so scattering only takes place in the s-wave
as argued above (higher waves do not interact with the delta function potential because the
corresponding wave functions vanish at the origin). The second important point to take into
account concerns the dependence of the scattering function on the cuto↵. As we will see now,
all dependence on ⇤ can be eliminated in terms of physical (i.e., measurable) quantities.

Looking at Eq. (1.22) we see that the denominator vanish for the following value of the
energy

E
0

= �⇤2~2

2M
e

2⇡
M↵ < 0. (1.23)

The existence of this pole in the scattering amplitude at negatives values of the energy indicates
the existence of a bound state, whose energy is nonperturbative in the coupling constant ↵.
Moreover, that its energy is proportional to ~ indicates that the bound state is a purely quantum
e↵ect. Now, since the energy of the bound state is a measurable quantity, we can trade ⇤ by
E

0

and thus eliminate all dependence of the scattering amplitude in the unphysical cuto↵

f(✓) =

r

2⇡

k

1

log
⇣

~2k2

2M |E0|

⌘

� i⇡
, (1.24)

where again we have written the energy in terms of the mometum of the particle. Thus, we
find the di↵erential cross section to be

d�

d⌦
=

2

⇡k

1

1 + 1

⇡
log2

⇣

~2k2

2M |E0|

⌘ . (1.25)

If scale invariance would have been preserved in the process of quantization, the result would
have been a scale invariant spectrum. However, we have found that the system has a single
bound state with energy E

0

which obviously breaks conformal invariance. Alternatively, this
result can be read by looking at the phase shifts �n(k), which in two dimensions are defined by

f(✓) = �i
1

X

n=�1

e2i�n(k) � 1p
2⇡k

ein✓. (1.26)

6

We identify the scattering function as

Taking into account now the general asymptotic form of the outgoing wave function at large
distances in two dimensions

 (+)(r) ⇠ eik·r/~ +
ei

kr
~ +

i⇡
4

p
r

f(✓), (1.21)

we identify the scattering function as

f(✓) = � 1p
2⇡k

1
1

M↵
+ 1

2⇡
log
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2~2

2ME
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First of all, the function is independent of the angle, so scattering only takes place in the s-wave
as argued above (higher waves do not interact with the delta function potential because the
corresponding wave functions vanish at the origin). The second important point to take into
account concerns the dependence of the scattering function on the cuto↵. As we will see now,
all dependence on ⇤ can be eliminated in terms of physical (i.e., measurable) quantities.

Looking at Eq. (1.22) we see that the denominator vanish for the following value of the
energy

E
0

= �⇤2~2

2M
e

2⇡
M↵ < 0. (1.23)

The existence of this pole in the scattering amplitude at negatives values of the energy indicates
the existence of a bound state, whose energy is nonperturbative in the coupling constant ↵.
Moreover, that its energy is proportional to ~ indicates that the bound state is a purely quantum
e↵ect. Now, since the energy of the bound state is a measurable quantity, we can trade ⇤ by
E

0

and thus eliminate all dependence of the scattering amplitude in the unphysical cuto↵

f(✓) =

r

2⇡

k

1

log
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~2k2

2M |E0|

⌘

� i⇡
, (1.24)

where again we have written the energy in terms of the mometum of the particle. Thus, we
find the di↵erential cross section to be

d�

d⌦
=

2
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1

1 + 1

⇡
log2

⇣

~2k2

2M |E0|

⌘ . (1.25)

If scale invariance would have been preserved in the process of quantization, the result would
have been a scale invariant spectrum. However, we have found that the system has a single
bound state with energy E

0

which obviously breaks conformal invariance. Alternatively, this
result can be read by looking at the phase shifts �n(k), which in two dimensions are defined by

f(✓) = �i
1

X

n=�1

e2i�n(k) � 1p
2⇡k

ein✓. (1.26)

6

Two important features:

• It is independent of the angle (only s-wave scattering).

• It depends on the (unphysical) cutoff.
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To deal with the second problem, we notice that the scattering function

Taking into account now the general asymptotic form of the outgoing wave function at large
distances in two dimensions

 (+)(r) ⇠ eik·r/~ +
ei

kr
~ +

i⇡
4

p
r

f(✓), (1.21)

we identify the scattering function as

f(✓) = � 1p
2⇡k

1
1

M↵
+ 1

2⇡
log

�

� ⇤

2~2

2ME

� . (1.22)

First of all, the function is independent of the angle, so scattering only takes place in the s-wave
as argued above (higher waves do not interact with the delta function potential because the
corresponding wave functions vanish at the origin). The second important point to take into
account concerns the dependence of the scattering function on the cuto↵. As we will see now,
all dependence on ⇤ can be eliminated in terms of physical (i.e., measurable) quantities.

Looking at Eq. (1.22) we see that the denominator vanish for the following value of the
energy

E
0

= �⇤2~2

2M
e

2⇡
M↵ < 0. (1.23)

The existence of this pole in the scattering amplitude at negatives values of the energy indicates
the existence of a bound state, whose energy is nonperturbative in the coupling constant ↵.
Moreover, that its energy is proportional to ~ indicates that the bound state is a purely quantum
e↵ect. Now, since the energy of the bound state is a measurable quantity, we can trade ⇤ by
E

0

and thus eliminate all dependence of the scattering amplitude in the unphysical cuto↵

f(✓) =

r

2⇡

k

1

log
⇣

~2k2

2M |E0|

⌘

� i⇡
, (1.24)

where again we have written the energy in terms of the mometum of the particle. Thus, we
find the di↵erential cross section to be

d�

d⌦
=

2
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1

1 + 1

⇡
log2

⇣

~2k2

2M |E0|
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If scale invariance would have been preserved in the process of quantization, the result would
have been a scale invariant spectrum. However, we have found that the system has a single
bound state with energy E

0

which obviously breaks conformal invariance. Alternatively, this
result can be read by looking at the phase shifts �n(k), which in two dimensions are defined by

f(✓) = �i
1

X

n=�1

e2i�n(k) � 1p
2⇡k

ein✓. (1.26)

6

has a pole for negative energy

Taking into account now the general asymptotic form of the outgoing wave function at large
distances in two dimensions

 (+)(r) ⇠ eik·r/~ +
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kr
~ +

i⇡
4

p
r

f(✓), (1.21)

we identify the scattering function as

f(✓) = � 1p
2⇡k

1
1
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2⇡
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2~2

2ME

� . (1.22)

First of all, the function is independent of the angle, so scattering only takes place in the s-wave
as argued above (higher waves do not interact with the delta function potential because the
corresponding wave functions vanish at the origin). The second important point to take into
account concerns the dependence of the scattering function on the cuto↵. As we will see now,
all dependence on ⇤ can be eliminated in terms of physical (i.e., measurable) quantities.

Looking at Eq. (1.22) we see that the denominator vanish for the following value of the
energy

E
0

= �⇤2~2

2M
e

2⇡
M↵ < 0. (1.23)

The existence of this pole in the scattering amplitude at negatives values of the energy indicates
the existence of a bound state, whose energy is nonperturbative in the coupling constant ↵.
Moreover, that its energy is proportional to ~ indicates that the bound state is a purely quantum
e↵ect. Now, since the energy of the bound state is a measurable quantity, we can trade ⇤ by
E

0

and thus eliminate all dependence of the scattering amplitude in the unphysical cuto↵

f(✓) =

r

2⇡

k

1

log
⇣

~2k2

2M |E0|

⌘
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, (1.24)

where again we have written the energy in terms of the mometum of the particle. Thus, we
find the di↵erential cross section to be

d�

d⌦
=

2
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⇣
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2M |E0|
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If scale invariance would have been preserved in the process of quantization, the result would
have been a scale invariant spectrum. However, we have found that the system has a single
bound state with energy E

0

which obviously breaks conformal invariance. Alternatively, this
result can be read by looking at the phase shifts �n(k), which in two dimensions are defined by

f(✓) = �i
1

X

n=�1

e2i�n(k) � 1p
2⇡k

ein✓. (1.26)

6

Thus, the theory has a single bound state and we can trade the cutoff Λ by 
the observable quantity E0 

Taking into account now the general asymptotic form of the outgoing wave function at large
distances in two dimensions

 (+)(r) ⇠ eik·r/~ +
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kr
~ +

i⇡
4

p
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f(✓), (1.21)

we identify the scattering function as

f(✓) = � 1p
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1
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2ME
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First of all, the function is independent of the angle, so scattering only takes place in the s-wave
as argued above (higher waves do not interact with the delta function potential because the
corresponding wave functions vanish at the origin). The second important point to take into
account concerns the dependence of the scattering function on the cuto↵. As we will see now,
all dependence on ⇤ can be eliminated in terms of physical (i.e., measurable) quantities.

Looking at Eq. (1.22) we see that the denominator vanish for the following value of the
energy

E
0

= �⇤2~2

2M
e

2⇡
M↵ < 0. (1.23)

The existence of this pole in the scattering amplitude at negatives values of the energy indicates
the existence of a bound state, whose energy is nonperturbative in the coupling constant ↵.
Moreover, that its energy is proportional to ~ indicates that the bound state is a purely quantum
e↵ect. Now, since the energy of the bound state is a measurable quantity, we can trade ⇤ by
E

0

and thus eliminate all dependence of the scattering amplitude in the unphysical cuto↵

f(✓) =

r

2⇡

k

1

log
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~2k2

2M |E0|

⌘
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, (1.24)

where again we have written the energy in terms of the mometum of the particle. Thus, we
find the di↵erential cross section to be
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2
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If scale invariance would have been preserved in the process of quantization, the result would
have been a scale invariant spectrum. However, we have found that the system has a single
bound state with energy E

0

which obviously breaks conformal invariance. Alternatively, this
result can be read by looking at the phase shifts �n(k), which in two dimensions are defined by

f(✓) = �i
1

X

n=�1

e2i�n(k) � 1p
2⇡k

ein✓. (1.26)

6

We have renormalized the theory!

[at this point, sending                 
requires               ]

⇤ ! 1
↵ ! 0�
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We define the scattering function in terms of the phase shifts

Taking into account now the general asymptotic form of the outgoing wave function at large
distances in two dimensions

 (+)(r) ⇠ eik·r/~ +
ei
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i⇡
4

p
r

f(✓), (1.21)

we identify the scattering function as

f(✓) = � 1p
2⇡k

1
1
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2⇡
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2~2

2ME

� . (1.22)

First of all, the function is independent of the angle, so scattering only takes place in the s-wave
as argued above (higher waves do not interact with the delta function potential because the
corresponding wave functions vanish at the origin). The second important point to take into
account concerns the dependence of the scattering function on the cuto↵. As we will see now,
all dependence on ⇤ can be eliminated in terms of physical (i.e., measurable) quantities.

Looking at Eq. (1.22) we see that the denominator vanish for the following value of the
energy

E
0

= �⇤2~2

2M
e

2⇡
M↵ < 0. (1.23)

The existence of this pole in the scattering amplitude at negatives values of the energy indicates
the existence of a bound state, whose energy is nonperturbative in the coupling constant ↵.
Moreover, that its energy is proportional to ~ indicates that the bound state is a purely quantum
e↵ect. Now, since the energy of the bound state is a measurable quantity, we can trade ⇤ by
E

0

and thus eliminate all dependence of the scattering amplitude in the unphysical cuto↵

f(✓) =

r

2⇡

k

1

log
⇣

~2k2

2M |E0|

⌘

� i⇡
, (1.24)

where again we have written the energy in terms of the mometum of the particle. Thus, we
find the di↵erential cross section to be
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⇣

~2k2

2M |E0|
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If scale invariance would have been preserved in the process of quantization, the result would
have been a scale invariant spectrum. However, we have found that the system has a single
bound state with energy E

0

which obviously breaks conformal invariance. Alternatively, this
result can be read by looking at the phase shifts �n(k), which in two dimensions are defined by

f(✓) = �i
1

X

n=�1

e2i�n(k) � 1p
2⇡k

ein✓. (1.26)

6Using our result for f (θ ),

The phase shift depends on the particle energy, hence…

Scale invariance is broken!
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Comparing with Eq. (1.24) we find that the only nonvanishing shift corresponds to n = 0 and

e2i�0(k) =

1

⇡
log

⇣

~2k2

2M |E0|

⌘

+ i

1
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log
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=) �n(k) = �n,0 cot

�1



1

⇡
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2M |E
0

|

◆�

. (1.27)

In a scale invariant theory, the phase shifts should be independent of the energy given the fact
that there is no scale that we can use to construct a dimensionless quantity. In our case, this
scale is provided by the energy of the bound state.

What we have just analyzed is an example of a quantum mechanical system in which scale
invariant is anomalous due to the dynamical generation of an energy scale, a bound state that
does not exist in the classical theory. In this respect, the situation is very similar to that found
in QCD, where a scale is dynamically generated that breaks the scale invariance of the classical
action.

Another example of a classical scale invariant system, this time in three dimensions, is that
of a particle interacting with a inverse square potential

V (r) =
↵

r2

. (1.28)

We will not analyze this case in detail, but only summarize its main features. For ↵ > 0 it
can be seen that scale invariance is preserved by quantization. For example, the phase shifts
for the scattering of a particle o↵ this potential are independent of the particle momentum.
In the case of an attractive potential, on the other hand, the situation changes because the
quantization shows that the spectrum of the system is continuous and unbounded below [2].
There are several ways to handle the problem. One of them is to notice that the corresponding
Hamiltonian is not self-adjoint, due to the singular character of the wave function at the origin.
Alternatively, one can regularize the potential around r = 0 and, as in the case of the delta
function potential, re-express the cuto↵ scale in terms of the energy of a (single) bound state.
Again, the final result shows how scale invariance is broken by quantum e↵ects, showing its
anomalous character.

7
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What is going on here?

Classically, the spectrum is scale invariant:

E

0
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What is going on here?

Classically, the spectrum is scale invariant:
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Quantum mechanically, scale invariance is broken by the presence of the 
bound state:

E

E0

0
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Quantum mechanically, scale invariance is broken by the presence of the 
bound state:

E E
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Taking into account now the general asymptotic form of the outgoing wave function at large
distances in two dimensions

 (+)(r) ⇠ eik·r/~ +
ei

kr
~ +

i⇡
4

p
r

f(✓), (1.21)

we identify the scattering function as

f(✓) = � 1p
2⇡k

1
1

M↵
+ 1

2⇡
log

�

� ⇤

2~2

2ME

� . (1.22)

First of all, the function is independent of the angle, so scattering only takes place in the s-wave
as argued above (higher waves do not interact with the delta function potential because the
corresponding wave functions vanish at the origin). The second important point to take into
account concerns the dependence of the scattering function on the cuto↵. As we will see now,
all dependence on ⇤ can be eliminated in terms of physical (i.e., measurable) quantities.

Looking at Eq. (1.22) we see that the denominator vanish for the following value of the
energy

E
0

= �⇤2~2

2M
e

2⇡
M↵ < 0. (1.23)

The existence of this pole in the scattering amplitude at negatives values of the energy indicates
the existence of a bound state, whose energy is nonperturbative in the coupling constant ↵.
Moreover, that its energy is proportional to ~ indicates that the bound state is a purely quantum
e↵ect. Now, since the energy of the bound state is a measurable quantity, we can trade ⇤ by
E

0

and thus eliminate all dependence of the scattering amplitude in the unphysical cuto↵

f(✓) =

r

2⇡

k

1

log
⇣

~2k2

2M |E0|

⌘

� i⇡
, (1.24)

where again we have written the energy in terms of the mometum of the particle. Thus, we
find the di↵erential cross section to be

d�

d⌦
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1 + 1

⇡
log2

⇣

~2k2

2M |E0|

⌘ . (1.25)

If scale invariance would have been preserved in the process of quantization, the result would
have been a scale invariant spectrum. However, we have found that the system has a single
bound state with energy E

0

which obviously breaks conformal invariance. Alternatively, this
result can be read by looking at the phase shifts �n(k), which in two dimensions are defined by

f(✓) = �i
1

X

n=�1

e2i�n(k) � 1p
2⇡k

ein✓. (1.26)

6

We have an energy scale that is quantum-mechanically generated. (e.g. as in 
QCD)
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Quantum mechanically, scale invariance is broken by the presence of the 
bound state:
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this bound state is a quantum 
mechanical affair!

Taking into account now the general asymptotic form of the outgoing wave function at large
distances in two dimensions

 (+)(r) ⇠ eik·r/~ +
ei

kr
~ +

i⇡
4

p
r

f(✓), (1.21)

we identify the scattering function as

f(✓) = � 1p
2⇡k

1
1

M↵
+ 1

2⇡
log
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� ⇤

2~2

2ME

� . (1.22)

First of all, the function is independent of the angle, so scattering only takes place in the s-wave
as argued above (higher waves do not interact with the delta function potential because the
corresponding wave functions vanish at the origin). The second important point to take into
account concerns the dependence of the scattering function on the cuto↵. As we will see now,
all dependence on ⇤ can be eliminated in terms of physical (i.e., measurable) quantities.

Looking at Eq. (1.22) we see that the denominator vanish for the following value of the
energy

E
0

= �⇤2~2

2M
e

2⇡
M↵ < 0. (1.23)

The existence of this pole in the scattering amplitude at negatives values of the energy indicates
the existence of a bound state, whose energy is nonperturbative in the coupling constant ↵.
Moreover, that its energy is proportional to ~ indicates that the bound state is a purely quantum
e↵ect. Now, since the energy of the bound state is a measurable quantity, we can trade ⇤ by
E

0

and thus eliminate all dependence of the scattering amplitude in the unphysical cuto↵

f(✓) =

r

2⇡

k

1

log
⇣

~2k2

2M |E0|

⌘

� i⇡
, (1.24)

where again we have written the energy in terms of the mometum of the particle. Thus, we
find the di↵erential cross section to be

d�

d⌦
=

2

⇡k

1

1 + 1

⇡
log2

⇣

~2k2

2M |E0|

⌘ . (1.25)

If scale invariance would have been preserved in the process of quantization, the result would
have been a scale invariant spectrum. However, we have found that the system has a single
bound state with energy E

0

which obviously breaks conformal invariance. Alternatively, this
result can be read by looking at the phase shifts �n(k), which in two dimensions are defined by

f(✓) = �i
1

X

n=�1

e2i�n(k) � 1p
2⇡k

ein✓. (1.26)

6

We have an energy scale that is quantum-mechanically generated. (e.g. as in 
QCD)



M.Á. Vázquez-Mozo                                                              Introduction to Anomalies in QFT                                                PhD Course, Universidad Autónoma de MadridM.Á. Vázquez-Mozo                                                              Introduction to Anomalies in QFT                                                PhD Course, Universidad Autónoma de Madrid

A second example is the 3D Hamiltonian

For the attractive case (α < 0) the potential overcomes the centrifugal barrier 
for 

✓
`+

1

2

◆2

< 3M |↵|

and the spectrum becomes continuous and unbounded from below

The Hamiltonian is not self-adjoint! 

H =
p2

2M
+

↵

r2
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To define the theory we regularize the Hamiltonian near r = 0, e.g. 

V (r) =

(
↵
r2 |r| > a

1 |r| < a

Renormalizing the parameters of the solution, leads in the a →  0 again to a 
bound state and the breaking of scale invariance.

The physics of these toy models is similar to dimensional transmutation 
in QCD

SQCD =

Z
d

4
x

0

@�1

4
F

a
µ⌫F

aµ⌫ +

NfX

f=1

Q

f
iD/ Q

f

1

A

⇤QCD

quantization

[see e.g. Coon & Holstein, Am. J. Phys. 70 (2002) 513]
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Anomalies: the good and the bad
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Whether anomalies are bad or good depends on what symmetries/invariances 
they affect:

• They are harmless and even useful when they affect 
global (non gauge) symmetries

Scale invariance

Chiral symmetry

asymptotic freedom
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23

µ jµk x ih̄Jk x (0.265)

S d4x
1
2 µ! µ!

g
4!
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" g
3g2

16#2
(0.267)

g µ
g µ0

1 3
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µ0

(0.268)
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µ JµA x ? 0 (0.270)

S d4x i$ $ eJµV A µ (0.271)

0 (0.272)

µ JµA x A
e2

2
d4y1d4y2

x
µ Cµ%& x,y A x y1 y2 A& x y2

p q µ i' µ(" p,q ? (0.273)

#0 2) (0.274)

Their presence can be also used to extract nonpeturbative information 
about the theory (anomaly matching)
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• They are potentially disastrous when they affect gauge 
symmetries

Gauge anomalies

Gravitational anomalies

These types of anomalies should be cancelled at all cost, otherwise the 
theory becomes sick (e.g. nonunitary)

The conditions for anomaly cancellations can be useful for phenomenology (e.g. 
constraints on the spectrum)
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The axial anomaly
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The symmetries of QED: a reminder

The QED action

2 The axial anomaly

2.1 The symmetries of QED.

After this general discussion we particularize our analysis to quantum electrodynamics (QED),
with action

S
QED

=

Z

d4x



�1

4
Fµ⌫F

µ⌫ +  (i@/ � m) � e /A 

�

. (2.1)

The theory is classically invariant under local phase transformation of the fermion field

 (x) �! ei↵(x) (x), ↵(x) 2 R. (2.2)

accompanied by a gauge transformation of the vector potential

Aµ(x) �! Aµ(x) + @µ↵(x). (2.3)

If the fermion is massless, m = 0, the theory has an additional global symmetry consisting on
chiral phase transformations

 (x) �! ei��5 (x), � 2 R. (2.4)

Applying Noether’s theorem, the massless theory has two classically conserved currents. One
is the vector current associated with phase transformations (2.2) with constant ↵

Jµ
V

=  �µ =) @µJ
µ
V

= 0. (2.5)

This is the electromagnetic current coupling to the gauge field Aµ. Its conservation is crucial
for the gauge invariance of the theory. The second conserved current is the one associated with
axial-vector transformations (2.4)

Jµ
A

=  �µ�
5

 =) @µJ
µ
A

= 0. (2.6)

Unlike the vector current, this does not couple to any gauge field. For massive fermions, the
conservation of the axial current is classically broken and instead of (2.6) we have

@µJ
µ
A = 2im �

5

 . (2.7)

In the quantum theory, conservation laws are codified in the Ward identities. In the case
of QED, there is a simple way to derive the Ward identities associated with the vector (gauge)
transformations by noticing that they reflect the invariance of physical amplitudes with respect
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This symmetry can be promoted to U(1) gauge invariance
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with (x) �! e

�i↵
 (x), (x) �! e

i↵
 (x), ↵ 2 R
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We can also allow a second type of axial global transformations of the 
fermion field:

This is not a symmetry of the action, due to the mass term. If we define the 
axial-vector current
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Axial global symmetry is recovered in the massless limit m �! 0

(pseudovector-pseudoscalar equivalence)
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At the level of the scattering amplitudes, conservations equations give rise to 
Ward identities.

In the case of QED, a general amplitude in momentum space has the structureto gauge transformations in the external photons. Generically, the amplitude in momentum
space with n incoming and m outgoing photons has the structure2

A(p
1

, . . . , pn; q1

, . . . , qm) = ✏µ1(p1

) . . . ✏µn(pn)✏⌫1(q1

)⇤ . . . ✏⌫n(qm)
⇤

⇥ �µ1...µn⌫1...⌫m(p
1

, . . . , pn; q1

, . . . , qm), (2.8)

where all external momenta are taken on shell, p2

i = q2

i = 0. Under a gauge transformation,
the polarization vectors transform by a term proportional to the momentum

"µ(p) �! "µ(p) + �pµ. (2.9)

The invariance of the amplitude with respect to these gauge transformations means that (2.8)
has to vanish when any of the polarization vector ✏µ(p) is replaced by the momentum pµ.
Symbolically

pµi�
...µi...⌫1...⌫m(pk; q`) = 0 = q⌫i�

µ1...µm...⌫i...(pk; q`). (2.10)

If gauge invariance is preserved in the quantum theory, these identities should be preserved
order by order in perturbation theory, i.e. once all diagrams contributing to a given order have
been summed.

2.2 The triangle diagram

Having discussed the basic ideas concerning anomalies, we proceed to deal in detail with a
first example of an anomalous symmetry in quantum field theory. We studing the quantum
conservation of the vector-axial current (2.6) in a theory of a fermion interacting with an
external classical gauge field Aµ through an interaction term

S
int

= �e

Z

d4x Jµ
V

(x)Aµ(x). (2.11)

The expectation value of the axial-vector current in the background of the gauge field is given,
in the functional integral language, by

hJµ
A

(x)iA =

Z

D D Jµ
A

(x)ei
R

d4x[(i@/�m) �eJµ
VAµ]

Z

D D ei
R

d4x[ (i@/�m) �eJµ
VAµ]

. (2.12)

The right-hand side can be computed in powers of the electric charge e. Notice that in this
expansion, each of the terms contain only functional integrals where the integration measures

2The amplitude may have also have fermions in the external states, that we omit here to keep things simple.
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leads to the gauge Ward identity
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Or more generally,                                              with          gauge invariant 
operators.

h@µJµ
V(y)O1(x1) . . .On(xn)i = 0
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order by order in perturbation theory, i.e. once all diagrams contributing to a given order have
been summed.

2.2 The triangle diagram

Having discussed the basic ideas concerning anomalies, we proceed to deal in detail with a
first example of an anomalous symmetry in quantum field theory. We studing the quantum
conservation of the vector-axial current (2.6) in a theory of a fermion interacting with an
external classical gauge field Aµ through an interaction term

S
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= �e
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V

(x)Aµ(x). (2.11)

The expectation value of the axial-vector current in the background of the gauge field is given,
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d4x[ (i@/�m) �eJµ
VAµ]

. (2.12)

The right-hand side can be computed in powers of the electric charge e. Notice that in this
expansion, each of the terms contain only functional integrals where the integration measures

2The amplitude may have also have fermions in the external states, that we omit here to keep things simple.
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What about the axial-vector current?

We study a Dirac fermion coupled to an external gauge field Aµ(x)
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If gauge invariance is preserved in the quantum theory, these identities should be preserved
order by order in perturbation theory, i.e. once all diagrams contributing to a given order have
been summed.

As we will see later, this gauge Ward identity can be formulated in position space in its full
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where Oi(x) are any gauge invariant operator of the theory.

2.2 The triangle diagram

Having discussed the basic ideas concerning anomalies, we proceed to deal in detail with a
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conservation of the vector-axial current (2.6) in a theory of a fermion interacting with an
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2The amplitude may have also have fermions in the external states, that we omit here to keep things simple.
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S
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Expanding in perturbation theory in the coupling constant,

The right-hand side can be computed in powers of the electric charge e. Notice that in this
expansion, each of the terms contain only functional integrals where the integration measures
are those of a free Dirac field. Thus, they can be interpreted as the expectation value of time-
ordered products of operators in the vacuum of the free theory |0i. In our case, to second order
in e we have

hJµ
A

(x)iA = �ie

Z

d4y h0|T [Jµ
A

(x)J↵
V

(y)]|0iA↵(y) (2.14)

� e2

2

Z

d4y
1

d4y
2

h0|T [Jµ
A

(x)J↵
V

(y
1

)J�
V

(y
2

)]|0iA↵(y1

)A�(y2

) + . . .

Since the correlation functions are defined in the free vacuum, they can be computed using
Wick theorem. In the case of the first term, after applying translational invariance, we write
in momentum space

eh0|T [Jµ
A

(0)J↵
V

(y � x)]|0i =
Z

d4p

(2⇡)4
�µ↵(k)eik·(x�y) (2.15)

The function inside the integral admits the following diagrammatic interpretation

i�µ⌫(k) = k

= e

Z

d4`

(2⇡)4
Tr

✓

�µ�
5

i

/̀� m+ i✏
�⌫ i

/̀� /k � m+ i✏

◆

(2.16)

Using the trace identities

Tr (�
5

�µ�⌫) = Tr (�
5

�µ�⌫�↵) = 0, Tr (�
5

�µ�⌫�↵��) = �4i✏µ⌫↵�, (2.17)

we find the integral reduces itself to

i�µ⌫(k) = �4ie ✏µ↵⌫�k�

Z

d4`

(2⇡)4
`↵

(`2 � m2 + i✏)[(` � k)2 � m2 + i✏]
. (2.18)

This integral is divergent and needs to be regularized. The presence of the Levi-Civita tensor,
however, shows that it satisfies both the vector and axial-vector Ward identity

kµi�
µ⌫(k) = 0 = k⌫i�

µ⌫(k). (2.19)

In fact, it is easy to show that �µ⌫(k) itself vanishes for any regularization preserving Lorentz
invariance. The reason is simple: if Lorentz invariance is not broken, the integral has to be
proportional to kµ and Eq. (2.18) vanishes due to the antisymmetry of ✏µ⌫↵�.
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We look at the first term

The right-hand side can be computed in powers of the electric charge e. Notice that in this
expansion, each of the terms contain only functional integrals where the integration measures
are those of a free Dirac field. Thus, they can be interpreted as the expectation value of time-
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Since the correlation functions are defined in the free vacuum, they can be computed using
Wick theorem. In the case of the first term, after applying translational invariance, we write
in momentum space
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This integral is divergent and needs to be regularized. The presence of the Levi-Civita tensor,
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Since the correlation functions are defined in the free vacuum, they can be computed using
Wick theorem. In the case of the first term, after applying translational invariance, we write
in momentum space

eh0|T [Jµ
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(0)J↵
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Our aim is to compute its contribution to the axial-vector Ward identity 

h@µJµ
A(x)iA = ? kµi�

µ⌫(k) = ?
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To compute the integral

The right-hand side can be computed in powers of the electric charge e. Notice that in this
expansion, each of the terms contain only functional integrals where the integration measures
are those of a free Dirac field. Thus, they can be interpreted as the expectation value of time-
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in e we have

hJµ
A

(x)iA = �ie

Z

d4y h0|T [Jµ
A

(x)J↵
V

(y)]|0iA↵(y) (2.14)

� e2

2

Z

d4y
1

d4y
2

h0|T [Jµ
A

(x)J↵
V

(y
1

)J�
V

(y
2

)]|0iA↵(y1

)A�(y2

) + . . .

Since the correlation functions are defined in the free vacuum, they can be computed using
Wick theorem. In the case of the first term, after applying translational invariance, we write
in momentum space
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This integral is divergent and needs to be regularized. The presence of the Levi-Civita tensor,
however, shows that it satisfies both the vector and axial-vector Ward identity
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In fact, it is easy to show that �µ⌫(k) itself vanishes for any regularization preserving Lorentz
invariance. The reason is simple: if Lorentz invariance is not broken, the integral has to be
proportional to kµ and Eq. (2.18) vanishes due to the antisymmetry of ✏µ⌫↵�.
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The right-hand side can be computed in powers of the electric charge e. Notice that in this
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ordered products of operators in the vacuum of the free theory |0i. In our case, to second order
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Since the correlation functions are defined in the free vacuum, they can be computed using
Wick theorem. In the case of the first term, after applying translational invariance, we write
in momentum space
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This integral is divergent and needs to be regularized. The presence of the Levi-Civita tensor,
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Since the correlation functions are defined in the free vacuum, they can be computed using
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in momentum space
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This integral is divergent and needs to be regularized. The presence of the Levi-Civita tensor,
however, shows that it satisfies both the vector and axial-vector Ward identity

kµi�
µ⌫(k) = 0 = k⌫i�

µ⌫(k). (2.19)

In fact, it is easy to show that �µ⌫(k) itself vanishes for any regularization preserving Lorentz
invariance. The reason is simple: if Lorentz invariance is not broken, the integral has to be
proportional to kµ and Eq. (2.18) vanishes due to the antisymmetry of ✏µ⌫↵�.
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Moreover, by Lorentz invariance i�µ⌫ = 0
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To find any anomaly, we have to go to the next order. Going to momentum 
space

Having shown that the correlation function of one vector and one axial-vector current does
not contribute to the anomaly of the axial current, we study the second term in Eq. (2.14).
Again, we work in momentum space
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so the quantum conservation equation takes the form
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ip·(y1�x)+iq·(y2�x).

To find whether the classical Ward identity (2.7) is corrected quantum mechanically, we
have to compute (p + q)µ�µ↵�(p, q). As in the previous computation, the Wick contractions
required to evaluate the previous correlation function can be summarized in terms of Feynman
diagrams. The momentum space correlation function i�µ↵�(p, q) is given at one loop by the
two Feynman diagrams

i�µ↵�(p, q) =

q�
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(p+ q)µ +
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(p+ q)µ (2.22)

whose contributions can be found using the Feynman rules of QED
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Linearly divergent integrals. These integrals are linearly divergent and therefore ambigu-
ous. To see what is meant by this, we look at a the simple integral

I(⇠) =

Z 1

�1
dx

h

f(x+ ⇠) � f(x)
i

. (2.24)

When the integral converges, a simple change of variables shows that I(⇠) = 0. To see what
happens when the integral diverges linearly or logarithmically, we expand the integrand of
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Having shown that the correlation function of one vector and one axial-vector current does
not contribute to the anomaly of the axial current, we study the second term in Eq. (2.14).
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required to evaluate the previous correlation function can be summarized in terms of Feynman
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Linearly divergent integrals. These integrals are linearly divergent and therefore ambigu-
ous. To see what is meant by this, we look at a the simple integral
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. (2.24)

When the integral converges, a simple change of variables shows that I(⇠) = 0. To see what
happens when the integral diverges linearly or logarithmically, we expand the integrand of
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The calculation involves now two triangle diagrams:

Having shown that the correlation function of one vector and one axial-vector current does
not contribute to the anomaly of the axial current, we study the second term in Eq. (2.14).
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To find whether the classical Ward identity (2.7) is corrected quantum mechanically, we
have to compute (p + q)µ�µ↵�(p, q). As in the previous computation, the Wick contractions
required to evaluate the previous correlation function can be summarized in terms of Feynman
diagrams. The momentum space correlation function i�µ↵�(p, q) is given at one loop by the
two Feynman diagrams
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whose contributions can be found using the Feynman rules of QED

i�µ↵�(p, q) = e2

Z

d4`

(2⇡)4
Tr

✓

i

/̀� m+ i✏
�µ�5

i

/̀� /p � /q � m+ i✏
��

i

/̀� /p � m+ i✏
�↵

◆

+

✓

p $ q
↵ $ �

◆

. (2.23)

Linearly divergent integrals. These integrals are linearly divergent and therefore ambigu-
ous. To see what is meant by this, we look at a the simple integral
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When the integral converges, a simple change of variables shows that I(⇠) = 0. To see what
happens when the integral diverges linearly or logarithmically, we expand the integrand of
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Applying the Feynman rules of QED, we have

Having shown that the correlation function of one vector and one axial-vector current does
not contribute to the anomaly of the axial current, we study the second term in Eq. (2.14).
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have to compute (p + q)µ�µ↵�(p, q). As in the previous computation, the Wick contractions
required to evaluate the previous correlation function can be summarized in terms of Feynman
diagrams. The momentum space correlation function i�µ↵�(p, q) is given at one loop by the
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Linearly divergent integrals. These integrals are linearly divergent and therefore ambigu-
ous. To see what is meant by this, we look at a the simple integral
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When the integral converges, a simple change of variables shows that I(⇠) = 0. To see what
happens when the integral diverges linearly or logarithmically, we expand the integrand of
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To find whether the classical Ward identity (2.7) is corrected quantum mechanically, we
have to compute (p + q)µ�µ↵�(p, q). As in the previous computation, the Wick contractions
required to evaluate the previous correlation function can be summarized in terms of Feynman
diagrams. The momentum space correlation function i�µ↵�(p, q) is given at one loop by the
two Feynman diagrams

i�µ↵�(p, q) =
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whose contributions can be found using the Feynman rules of QED
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Linearly divergent integrals. These integrals are linearly divergent and therefore ambigu-
ous. To see what is meant by this, we look at a the simple integral

I(⇠) =

Z 1
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f(x+ ⇠) � f(x)
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. (2.24)

When the integral converges, a simple change of variables shows that I(⇠) = 0. To see what
happens when the integral diverges linearly or logarithmically, we expand the integrand of
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so we only need to compute the integrals…
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Applying the Feynman rules of QED, we have

Having shown that the correlation function of one vector and one axial-vector current does
not contribute to the anomaly of the axial current, we study the second term in Eq. (2.14).
Again, we work in momentum space
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required to evaluate the previous correlation function can be summarized in terms of Feynman
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Linearly divergent integrals. These integrals are linearly divergent and therefore ambigu-
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When the integral converges, a simple change of variables shows that I(⇠) = 0. To see what
happens when the integral diverges linearly or logarithmically, we expand the integrand of
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Having shown that the correlation function of one vector and one axial-vector current does
not contribute to the anomaly of the axial current, we study the second term in Eq. (2.14).
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To find whether the classical Ward identity (2.7) is corrected quantum mechanically, we
have to compute (p + q)µ�µ↵�(p, q). As in the previous computation, the Wick contractions
required to evaluate the previous correlation function can be summarized in terms of Feynman
diagrams. The momentum space correlation function i�µ↵�(p, q) is given at one loop by the
two Feynman diagrams
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whose contributions can be found using the Feynman rules of QED
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Linearly divergent integrals. These integrals are linearly divergent and therefore ambigu-
ous. To see what is meant by this, we look at a the simple integral
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When the integral converges, a simple change of variables shows that I(⇠) = 0. To see what
happens when the integral diverges linearly or logarithmically, we expand the integrand of

11These integrals are linearly divergent!!

BEWARE!!

so we only need to compute the integrals…
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Interlude: linearly divergent integrals
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Let us begin with the simplest one-dimensional case:

Having shown that the correlation function of one vector and one axial-vector current does
not contribute to the anomaly of the axial current, we study the second term in Eq. (2.14).
Again, we work in momentum space

e2h0|T [Jµ
A

(0)J↵
V

(x
1

)J�
V

(x
2

)]|0i =
Z

d4p

(2⇡)4

Z

d4q

(2⇡)4
i�µ↵�(p, q)eip·x1+iq·x2 , (2.20)

so the quantum conservation equation takes the form

@µhJµ
A

(x)iA =
i

2

Z

d4y
1

d4y
2

A ↵(y
1

)A �(y
2

) (2.21)

⇥
Z

d4p

(2⇡)4

Z

d4q

(2⇡)4
(p+ q)µi�µ↵�(p, q)e

ip·(y1�x)+iq·(y2�x).

To find whether the classical Ward identity (2.7) is corrected quantum mechanically, we
have to compute (p + q)µ�µ↵�(p, q). As in the previous computation, the Wick contractions
required to evaluate the previous correlation function can be summarized in terms of Feynman
diagrams. The momentum space correlation function i�µ↵�(p, q) is given at one loop by the
two Feynman diagrams

i�µ↵�(p, q) =

q�

p↵

(p+ q)µ +

q�

p↵

(p+ q)µ (2.22)

whose contributions can be found using the Feynman rules of QED

i�µ↵�(p, q) = e2

Z

d4`

(2⇡)4
Tr

✓

i

/̀� m+ i✏
�µ�5

i

/̀� /p � /q � m+ i✏
��

i

/̀� /p � m+ i✏
�↵

◆

+

✓

p $ q
↵ $ �

◆

. (2.23)

Linearly divergent integrals. These integrals are linearly divergent and therefore ambigu-
ous. To see what is meant by this, we look at a the simple integral

I(⇠) =

Z 1

�1
dx

h

f(x+ ⇠) � f(x)
i

. (2.24)

When the integral converges, a simple change of variables shows that I(⇠) = 0. To see what
happens when the integral diverges linearly or logarithmically, we expand the integrand of

11

If the function f(x) is integrable on     we conclude that              .

2 The axial anomaly

2.1 The symmetries of QED.

After this general discussion we particularize our analysis to quantum electrodynamics (QED),
with action

S
QED

=

Z

d4x



�1

4
Fµ⌫F

µ⌫ +  (i@/ � m) � e /A 

�

. (2.1)

The theory is classically invariant under local phase transformation of the fermion field

 (x) �! ei↵(x) (x), ↵(x) 2 R. (2.2)

accompanied by a gauge transformation of the vector potential

Aµ(x) �! Aµ(x) + @µ↵(x). (2.3)

If the fermion is massless, m = 0, the theory has an additional global symmetry consisting on
chiral phase transformations

 (x) �! ei��5 (x), � 2 R. (2.4)

Applying Noether’s theorem, the massless theory has two classically conserved currents. One
is the vector current associated with phase transformations (2.2) with constant ↵

Jµ
V

=  �µ =) @µJ
µ
V

= 0. (2.5)

This is the electromagnetic current coupling to the gauge field Aµ. Its conservation is crucial
for the gauge invariance of the theory. The second conserved current is the one associated with
axial-vector transformations (2.4)

Jµ
A

=  �µ�
5

 =) @µJ
µ
A

= 0. (2.6)

Unlike the vector current, this does not couple to any gauge field. For massive fermions, the
conservation of the axial current is classically broken and instead of (2.6) we have

@µJ
µ
A = 2im �

5

 . (2.7)

In the quantum theory, conservation laws are codified in the Ward identities. In the case
of QED, there is a simple way to derive the Ward identities associated with the vector (gauge)
transformations by noticing that they reflect the invariance of physical amplitudes with respect
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I(⇠) = 0

Let us however assume that for large |x| has one of the two behaviors:

f(x) ⇠ 1

x

f(x) ⇠ constant

(logarithmically divergent integral)

(linearly divergent integral)

(2.24) in powers of ⇠. The result is

I(⇠) =

Z 1

�1
dx



f 0(x)⇠ +
1

2
f 00(x)⇠2 + . . .

�

. (2.25)

If the function f(x) grows at most like a constant as |x| ! 1, all terms with derivatives higher
than two are zero at infinity and do not contribute to the integral. Thus we have

I(⇠) = ⇠

Z 1

�1
dx f 0(x) = ⇠

h

f(1) � f(�1)
i

. (2.26)

For a logarithmically divergent integral f(±1) = 0, and I(a) = 0. On the other hand, if
the integral is linearly divergent, the function f(x) approaches constant values as |x| ! 1 and
generically

Z 1

�1
dx

h

f(x+ ⇠) � f(x)
i

= f(1) � f(�1) 6= 0. (2.27)

In this case, shifting the integration variable changes the value of the integral.
A similar result holds for multidimensional linearly divergent integrals. We consider the

following integral in four-dimensional Minkowki spacetime

Iµ
4

(⇠) =

Z

d4`

(2⇡)4

h

fµ(`+ ⇠) � fµ(`)
i

. (2.28)

To define the integral, we perform a Wick rotation into Euclidean space,

Iµ
4

(⇠) = i

Z

d4`E
(2⇡)4

h

fµ(`E + ⇠) � fµ(`E)
i

. (2.29)

If the integral is linearly divergent, the function behave as |`E| �! 1 as

fµ(`E) ⇠ C
`µE
`4E

, (2.30)

where C is a numerical constant. Expanding the integrand in Eq. (2.29)

Iµ
4

(⇠) = i

Z

d4`E
(2⇡)4

"

⇠↵
@fµ

@`↵E

�

�

�

�

aE=0

+
1

2
⇠↵⇠�

@2fµ

@`↵E@`
�
E

�

�

�

�

�

aE=0

+ . . .

#

, (2.31)

we see how the integral over R4 can be expressed, using Gauss theorem in terms of an integral
at infinity. Given the behavior (2.30), the only terms that contributes there is the one with

12

expanding the integrand around x

we arrive at:

(2.24) in powers of ⇠. The result is

I(⇠) =

Z 1

�1
dx



f 0(x)⇠ +
1

2
f 00(x)⇠2 + . . .

�

. (2.25)

If the function f(x) grows at most like a constant as |x| ! 1, all terms with derivatives higher
than two are zero at infinity and do not contribute to the integral. Thus we have

I(⇠) = ⇠

Z 1

�1
dx f 0(x) = ⇠

h

f(1) � f(�1)
i

. (2.26)

For a logarithmically divergent integral f(±1) = 0, and I(a) = 0. On the other hand, if
the integral is linearly divergent, the function f(x) approaches constant values as |x| ! 1 and
generically

Z 1

�1
dx

h

f(x+ ⇠) � f(x)
i

= f(1) � f(�1) 6= 0. (2.27)

In this case, shifting the integration variable changes the value of the integral.
A similar result holds for multidimensional linearly divergent integrals. We consider the

following integral in four-dimensional Minkowki spacetime

Iµ
4

(⇠) =

Z

d4`

(2⇡)4

h

fµ(`+ ⇠) � fµ(`)
i

. (2.28)

To define the integral, we perform a Wick rotation into Euclidean space,

Iµ
4

(⇠) = i

Z

d4`E
(2⇡)4

h

fµ(`E + ⇠) � fµ(`E)
i

. (2.29)

If the integral is linearly divergent, the function behave as |`E| �! 1 as

fµ(`E) ⇠ C
`µE
`4E

, (2.30)

where C is a numerical constant. Expanding the integrand in Eq. (2.29)

Iµ
4

(⇠) = i

Z

d4`E
(2⇡)4

"

⇠↵
@fµ

@`↵E

�

�

�

�

aE=0

+
1

2
⇠↵⇠�

@2fµ

@`↵E@`
�
E

�

�

�

�

�

aE=0

+ . . .

#

, (2.31)

we see how the integral over R4 can be expressed, using Gauss theorem in terms of an integral
at infinity. Given the behavior (2.30), the only terms that contributes there is the one with

12
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(2.24) in powers of ⇠. The result is

I(⇠) =

Z 1

�1
dx



f 0(x)⇠ +
1

2
f 00(x)⇠2 + . . .

�

. (2.25)

If the function f(x) grows at most like a constant as |x| ! 1, all terms with derivatives higher
than two are zero at infinity and do not contribute to the integral. Thus we have

I(⇠) = ⇠

Z 1

�1
dx f 0(x) = ⇠

h

f(1) � f(�1)
i

. (2.26)

For a logarithmically divergent integral f(±1) = 0, and I(a) = 0. On the other hand, if
the integral is linearly divergent, the function f(x) approaches constant values as |x| ! 1 and
generically

Z 1

�1
dx

h

f(x+ ⇠) � f(x)
i

= f(1) � f(�1) 6= 0. (2.27)

In this case, shifting the integration variable changes the value of the integral.
A similar result holds for multidimensional linearly divergent integrals. We consider the

following integral in four-dimensional Minkowki spacetime

Iµ
4

(⇠) =

Z

d4`

(2⇡)4

h

fµ(`+ ⇠) � fµ(`)
i

. (2.28)

To define the integral, we perform a Wick rotation into Euclidean space,

Iµ
4

(⇠) = i

Z

d4`E
(2⇡)4

h

fµ(`E + ⇠) � fµ(`E)
i

. (2.29)

If the integral is linearly divergent, the function behave as |`E| �! 1 as

fµ(`E) ⇠ C
`µE
`4E

, (2.30)

where C is a numerical constant. Expanding the integrand in Eq. (2.29)

Iµ
4

(⇠) = i

Z

d4`E
(2⇡)4

"

⇠↵
@fµ

@`↵E

�

�

�

�

aE=0

+
1

2
⇠↵⇠�

@2fµ

@`↵E@`
�
E

�

�

�

�

�

aE=0

+ . . .

#

, (2.31)

we see how the integral over R4 can be expressed, using Gauss theorem in terms of an integral
at infinity. Given the behavior (2.30), the only terms that contributes there is the one with
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Thus, for linearly divergent integrals:

Shifting the integration variable changes the value of a linearly divergent 
integral!

Something similar happens in four dimensions

(2.24) in powers of ⇠. The result is

I(⇠) =

Z 1

�1
dx



f 0(x)⇠ +
1

2
f 00(x)⇠2 + . . .

�

. (2.25)

If the function f(x) grows at most like a constant as |x| ! 1, all terms with derivatives higher
than two are zero at infinity and do not contribute to the integral. Thus we have

I(⇠) = ⇠

Z 1

�1
dx f 0(x) = ⇠

h

f(1) � f(�1)
i

. (2.26)

For a logarithmically divergent integral f(±1) = 0, and I(a) = 0. On the other hand, if
the integral is linearly divergent, the function f(x) approaches constant values as |x| ! 1 and
generically

Z 1

�1
dx

h

f(x+ ⇠) � f(x)
i

= f(1) � f(�1) 6= 0. (2.27)

In this case, shifting the integration variable changes the value of the integral.
A similar result holds for multidimensional linearly divergent integrals. We consider the

following integral in four-dimensional Minkowki spacetime

Iµ
4

(⇠) =

Z

d4`

(2⇡)4

h

fµ(`+ ⇠) � fµ(`)
i

. (2.28)

To define the integral, we perform a Wick rotation into Euclidean space,

Iµ
4

(⇠) = i

Z

d4`E
(2⇡)4

h

fµ(`E + ⇠) � fµ(`E)
i

. (2.29)

If the integral is linearly divergent, the function behave as |`E| �! 1 as

fµ(`E) ⇠ C
`µE
`4E

, (2.30)

where C is a numerical constant. Expanding the integrand in Eq. (2.29)

Iµ
4

(⇠) = i

Z

d4`E
(2⇡)4

"

⇠↵
@fµ

@`↵E

�

�

�

�

aE=0

+
1

2
⇠↵⇠�

@2fµ

@`↵E@`
�
E

�

�

�

�

�

aE=0

+ . . .

#

, (2.31)

we see how the integral over R4 can be expressed, using Gauss theorem in terms of an integral
at infinity. Given the behavior (2.30), the only terms that contributes there is the one with

12

To make sense of the integral, we perform a Wick 
rotation into Euclidean space

(2.24) in powers of ⇠. The result is

I(⇠) =

Z 1

�1
dx



f 0(x)⇠ +
1

2
f 00(x)⇠2 + . . .

�

. (2.25)

If the function f(x) grows at most like a constant as |x| ! 1, all terms with derivatives higher
than two are zero at infinity and do not contribute to the integral. Thus we have

I(⇠) = ⇠

Z 1

�1
dx f 0(x) = ⇠

h

f(1) � f(�1)
i

. (2.26)

For a logarithmically divergent integral f(±1) = 0, and I(a) = 0. On the other hand, if
the integral is linearly divergent, the function f(x) approaches constant values as |x| ! 1 and
generically

Z 1

�1
dx

h

f(x+ ⇠) � f(x)
i

= f(1) � f(�1) 6= 0. (2.27)

In this case, shifting the integration variable changes the value of the integral.
A similar result holds for multidimensional linearly divergent integrals. We consider the

following integral in four-dimensional Minkowki spacetime

Iµ
4

(⇠) =

Z

d4`

(2⇡)4

h

fµ(`+ ⇠) � fµ(`)
i

. (2.28)

To define the integral, we perform a Wick rotation into Euclidean space,

Iµ
4

(⇠) = i

Z

d4`E
(2⇡)4

h

fµ(`E + ⇠) � fµ(`E)
i

. (2.29)

If the integral is linearly divergent, the function behave as |`E| �! 1 as

fµ(`E) ⇠ C
`µE
`4E

, (2.30)

where C is a numerical constant. Expanding the integrand in Eq. (2.29)

Iµ
4

(⇠) = i

Z

d4`E
(2⇡)4

"

⇠↵
@fµ

@`↵E

�

�

�

�

aE=0

+
1

2
⇠↵⇠�

@2fµ

@`↵E@`
�
E

�

�

�

�

�

aE=0

+ . . .

#

, (2.31)

we see how the integral over R4 can be expressed, using Gauss theorem in terms of an integral
at infinity. Given the behavior (2.30), the only terms that contributes there is the one with

12
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If the integral is linearly divergent its asymptotic behavior is:

(2.24) in powers of ⇠. The result is

I(⇠) =

Z 1

�1
dx



f 0(x)⇠ +
1

2
f 00(x)⇠2 + . . .

�

. (2.25)

If the function f(x) grows at most like a constant as |x| ! 1, all terms with derivatives higher
than two are zero at infinity and do not contribute to the integral. Thus we have

I(⇠) = ⇠

Z 1

�1
dx f 0(x) = ⇠

h

f(1) � f(�1)
i

. (2.26)

For a logarithmically divergent integral f(±1) = 0, and I(a) = 0. On the other hand, if
the integral is linearly divergent, the function f(x) approaches constant values as |x| ! 1 and
generically

Z 1

�1
dx

h

f(x+ ⇠) � f(x)
i

= f(1) � f(�1) 6= 0. (2.27)

In this case, shifting the integration variable changes the value of the integral.
A similar result holds for multidimensional linearly divergent integrals. We consider the

following integral in four-dimensional Minkowki spacetime

Iµ
4

(⇠) =

Z

d4`

(2⇡)4

h

fµ(`+ ⇠) � fµ(`)
i

. (2.28)

To define the integral, we perform a Wick rotation into Euclidean space,

Iµ
4

(⇠) = i

Z

d4`E
(2⇡)4

h

fµ(`E + ⇠) � fµ(`E)
i

. (2.29)

If the integral is linearly divergent, the function behave as |`E| �! 1 as

fµ(`E) ⇠ C
`µE
`4E

, (2.30)

where C is a numerical constant. Expanding the integrand in Eq. (2.29)

Iµ
4

(⇠) = i

Z

d4`E
(2⇡)4

"

⇠↵
@fµ

@`↵E

�

�

�

�

aE=0

+
1

2
⇠↵⇠�

@2fµ

@`↵E@`
�
E

�

�

�

�

�

aE=0

+ . . .

#

, (2.31)

we see how the integral over R4 can be expressed, using Gauss theorem in terms of an integral
at infinity. Given the behavior (2.30), the only terms that contributes there is the one with
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Expanding the integrand

(2.24) in powers of ⇠. The result is

I(⇠) =

Z 1

�1
dx



f 0(x)⇠ +
1

2
f 00(x)⇠2 + . . .

�

. (2.25)

If the function f(x) grows at most like a constant as |x| ! 1, all terms with derivatives higher
than two are zero at infinity and do not contribute to the integral. Thus we have

I(⇠) = ⇠

Z 1

�1
dx f 0(x) = ⇠

h

f(1) � f(�1)
i

. (2.26)

For a logarithmically divergent integral f(±1) = 0, and I(a) = 0. On the other hand, if
the integral is linearly divergent, the function f(x) approaches constant values as |x| ! 1 and
generically

Z 1

�1
dx

h

f(x+ ⇠) � f(x)
i

= f(1) � f(�1) 6= 0. (2.27)

In this case, shifting the integration variable changes the value of the integral.
A similar result holds for multidimensional linearly divergent integrals. We consider the

following integral in four-dimensional Minkowki spacetime

Iµ
4

(⇠) =

Z

d4`

(2⇡)4

h

fµ(`+ ⇠) � fµ(`)
i

. (2.28)

To define the integral, we perform a Wick rotation into Euclidean space,

Iµ
4

(⇠) = i

Z

d4`E
(2⇡)4

h

fµ(`E + ⇠) � fµ(`E)
i

. (2.29)

If the integral is linearly divergent, the function behave as |`E| �! 1 as

fµ(`E) ⇠ C
`µE
`4E

, (2.30)

where C is a numerical constant. Expanding the integrand in Eq. (2.29)

Iµ
4

(⇠) = i

Z

d4`E
(2⇡)4

"

⇠↵
@fµ

@`↵E

�

�

�

�

aE=0

+
1

2
⇠↵⇠�

@2fµ

@`↵E@`
�
E

�

�

�

�

�

aE=0

+ . . .

#

, (2.31)

we see how the integral over R4 can be expressed, using Gauss theorem in terms of an integral
at infinity. Given the behavior (2.30), the only terms that contributes there is the one with
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Again, only the first term contributes. Applying Gauß’ theoremone derivative, the remaining terms going to zero faster than the three powers contained in the
integration measure. Taking this into account, we have

Iµ
4

(⇠) =
i

16⇡4

Z

S3
1

d⌃↵⇠
↵fµ(`E) =

iC

16⇡4

⇠↵

Z

d⌦
3

`µE`
↵
E

`2E
, (2.32)

where d⌦
3

indicates the integration over all directions in four-dimensional Euclidean space.
Using asymptotic rotational invariance to write

Z

d⌦
3

`µE`
↵
E

`2E
=

1

4
�µ↵Vol(S3) =

⇡2

2
�µ↵, (2.33)

we finally get
Z

d4`

(2⇡)4

h

fµ(`+ ⇠) � fµ(`)
i

=
iC

32⇡2

⇠µ. (2.34)

As in the one-dimensional case, the value of the integral also depends on the shift.

The calculation of the triangle diagram. The previous discussion is very relevant for the
calculation of the diagrams in (2.22) because it implies that the value of the finite part of the
integral changes under shifts of the integration variable and therefore it depends on how we
label the loop momentum. For example,

`

`+ p

` � q

6= ` � p

`

` � p � q

(2.35)

We will see shortly that this ambiguity is fixed once the conservation of the vector current is
imposed3.

There are a number of properties of the function �µ↵�(p, q) that can be deduced from general
considerations. Due to the presence of the axial-vector current in the correlation function,
the amplitude is parity odd, so it should contain a Levi-Civita tensor. Given this, Poincaré
invariance leads to the following structure in terms of eight monomials

i�µ↵�(p, q) = f
1

✏µ↵��p
� + f

2

✏µ↵��q
� + f

3

✏µ↵��p�p
�q�

+ f
4

✏µ↵��q�p
�q� + f

5

✏µ���p↵p
�q� (2.36)

+ f
6

✏µ���q↵p
�q� + f

7

✏↵���pµp
�q� + f

8

✏↵���qµp
�q�,

3The reader probably noticed by now that the integral in Eq. (2.18) was also linearly divergent. However,
we have seen that it vanishes using only Lorentz invariance, without having to shift the integration momentum.
Meanwhile, in the case of Eq. (2.23) a cancellation between the contributions of the two triangle diagrams to
the anomaly can be achieved only at the price of shifting the loop momentum of one of the integrals. This is
precisely what it cannot be done in a linearly divergent integral.
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(2.24) in powers of ⇠. The result is

I(⇠) =

Z 1

�1
dx



f 0(x)⇠ +
1

2
f 00(x)⇠2 + . . .

�

. (2.25)

If the function f(x) grows at most like a constant as |x| ! 1, all terms with derivatives higher
than two are zero at infinity and do not contribute to the integral. Thus we have

I(⇠) = ⇠

Z 1

�1
dx f 0(x) = ⇠

h

f(1) � f(�1)
i

. (2.26)

For a logarithmically divergent integral f(±1) = 0, and I(a) = 0. On the other hand, if
the integral is linearly divergent, the function f(x) approaches constant values as |x| ! 1 and
generically

Z 1

�1
dx

h

f(x+ ⇠) � f(x)
i

= f(1) � f(�1) 6= 0. (2.27)

In this case, shifting the integration variable changes the value of the integral.
A similar result holds for multidimensional linearly divergent integrals. We consider the

following integral in four-dimensional Minkowki spacetime

Iµ
4

(⇠) =

Z

d4`

(2⇡)4

h

fµ(`+ ⇠) � fµ(`)
i

. (2.28)

To define the integral, we perform a Wick rotation into Euclidean space,

Iµ
4

(⇠) = i

Z

d4`E
(2⇡)4

h

fµ(`E + ⇠) � fµ(`E)
i

. (2.29)

If the integral is linearly divergent, the function behave as |`E| �! 1 as

fµ(`E) ⇠ C
`µE
`4E

, (2.30)

where C is a numerical constant. Expanding the integrand in Eq. (2.29)

Iµ
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(⇠) = i

Z
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(2⇡)4
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aE=0

+ . . .

#

, (2.31)

we see how the integral over R4 can be expressed, using Gauss theorem in terms of an integral
at infinity. Given the behavior (2.30), the only terms that contributes there is the one with
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(2.24) in powers of ⇠. The result is
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Z 1
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dx
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f 0(x)⇠ +
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2
f 00(x)⇠2 + . . .

�

. (2.25)

If the function f(x) grows at most like a constant as |x| ! 1, all terms with derivatives higher
than two are zero at infinity and do not contribute to the integral. Thus we have
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�1
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h

f(1) � f(�1)
i

. (2.26)

For a logarithmically divergent integral f(±1) = 0, and I(a) = 0. On the other hand, if
the integral is linearly divergent, the function f(x) approaches constant values as |x| ! 1 and
generically
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5 , (2.31)

we see how the integral over R4 can be expressed, using Gauss theorem in terms of an integral
at infinity. Given the behavior (2.30), the only terms that contributes there is the one with
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The remaining integral can be done using asymptotic rotational 
invariance

one derivative, the remaining terms going to zero faster than the three powers contained in the
integration measure. Taking this into account, we have

Iµ
4

(⇠) =
i

16⇡4

Z

S3
1

d⌃↵⇠
↵fµ(`E) =

iC

16⇡4

⇠↵

Z

d⌦
3

`µE`
↵
E

`2E
, (2.32)

where d⌦
3

indicates the integration over all directions in four-dimensional Euclidean space.
Using asymptotic rotational invariance to write

Z

d⌦
3

`µE`
↵
E

`2E
=

1

4
�µ↵Vol(S3) =

⇡2

2
�µ↵, (2.33)

we finally get
Z

d4`

(2⇡)4

h

fµ(`+ ⇠) � fµ(`)
i

=
iC

32⇡2

⇠µ. (2.34)

As in the one-dimensional case, the value of the integral also depends on the shift.

The calculation of the triangle diagram. The previous discussion is very relevant for the
calculation of the diagrams in (2.22) because it implies that the value of the finite part of the
integral changes under shifts of the integration variable and therefore it depends on how we
label the loop momentum. For example,

`

`+ p

` � q

6= ` � p

`

` � p � q

(2.35)

We will see shortly that this ambiguity is fixed once the conservation of the vector current is
imposed3.

There are a number of properties of the function �µ↵�(p, q) that can be deduced from general
considerations. Due to the presence of the axial-vector current in the correlation function,
the amplitude is parity odd, so it should contain a Levi-Civita tensor. Given this, Poincaré
invariance leads to the following structure in terms of eight monomials

i�µ↵�(p, q) = f
1

✏µ↵��p
� + f

2

✏µ↵��q
� + f

3

✏µ↵��p�p
�q�

+ f
4

✏µ↵��q�p
�q� + f

5

✏µ���p↵p
�q� (2.36)

+ f
6

✏µ���q↵p
�q� + f

7

✏↵���pµp
�q� + f

8

✏↵���qµp
�q�,

3The reader probably noticed by now that the integral in Eq. (2.18) was also linearly divergent. However,
we have seen that it vanishes using only Lorentz invariance, without having to shift the integration momentum.
Meanwhile, in the case of Eq. (2.23) a cancellation between the contributions of the two triangle diagrams to
the anomaly can be achieved only at the price of shifting the loop momentum of one of the integrals. This is
precisely what it cannot be done in a linearly divergent integral.

13

With this, we got

one derivative, the remaining terms going to zero faster than the three powers contained in the
integration measure. Taking this into account, we have

Iµ
4

(⇠) =
i

16⇡4

Z

S3
1

d⌃↵⇠
↵fµ(`E) =

iC

16⇡4

⇠↵

Z

d⌦
3

`µE`
↵
E

`2E
, (2.32)

where d⌦
3

indicates the integration over all directions in four-dimensional Euclidean space.
Using asymptotic rotational invariance to write

Z

d⌦
3

`µE`
↵
E

`2E
=

1

4
�µ↵Vol(S3) =

⇡2

2
�µ↵, (2.33)

we finally get
Z

d4`

(2⇡)4

h

fµ(`+ ⇠) � fµ(`)
i

=
iC

32⇡2

⇠µ. (2.34)

As in the one-dimensional case, the value of the integral also depends on the shift.

The calculation of the triangle diagram. The previous discussion is very relevant for the
calculation of the diagrams in (2.22) because it implies that the value of the finite part of the
integral changes under shifts of the integration variable and therefore it depends on how we
label the loop momentum. For example,

`

`+ p

` � q

6= ` � p

`

` � p � q

(2.35)

We will see shortly that this ambiguity is fixed once the conservation of the vector current is
imposed3.

There are a number of properties of the function �µ↵�(p, q) that can be deduced from general
considerations. Due to the presence of the axial-vector current in the correlation function,
the amplitude is parity odd, so it should contain a Levi-Civita tensor. Given this, Poincaré
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Very important: remember the origin of the constant C

Thus, the ambiguity only depends on the large momentum behavior of 
the integrand (i.e., it doesn’t depend on the masses of the particles running in 
the loop!)

(2.24) in powers of ⇠. The result is

I(⇠) =

Z 1

�1
dx



f 0(x)⇠ +
1

2
f 00(x)⇠2 + . . .

�

. (2.25)

If the function f(x) grows at most like a constant as |x| ! 1, all terms with derivatives higher
than two are zero at infinity and do not contribute to the integral. Thus we have

I(⇠) = ⇠

Z 1

�1
dx f 0(x) = ⇠

h

f(1) � f(�1)
i

. (2.26)

For a logarithmically divergent integral f(±1) = 0, and I(a) = 0. On the other hand, if
the integral is linearly divergent, the function f(x) approaches constant values as |x| ! 1 and
generically

Z 1

�1
dx

h

f(x+ ⇠) � f(x)
i

= f(1) � f(�1) 6= 0. (2.27)

In this case, shifting the integration variable changes the value of the integral.
A similar result holds for multidimensional linearly divergent integrals. We consider the

following integral in four-dimensional Minkowki spacetime

Iµ
4

(⇠) =

Z

d4`

(2⇡)4

h

fµ(`+ ⇠) � fµ(`)
i

. (2.28)

To define the integral, we perform a Wick rotation into Euclidean space,

Iµ
4

(⇠) = i

Z

d4`E
(2⇡)4

h

fµ(`E + ⇠) � fµ(`E)
i

. (2.29)

If the integral is linearly divergent, the function behave as |`E| �! 1 as

fµ(`E) ⇠ C
`µE
`4E

, (2.30)

where C is a numerical constant. Expanding the integrand in Eq. (2.29)

Iµ
4

(⇠) = i

Z

d4`E
(2⇡)4

"

⇠↵
@fµ

@`↵E

�

�

�

�

aE=0

+
1

2
⇠↵⇠�

@2fµ

@`↵E@`
�
E

�

�

�

�

�

aE=0

+ . . .

#

, (2.31)

we see how the integral over R4 can be expressed, using Gauss theorem in terms of an integral
at infinity. Given the behavior (2.30), the only terms that contributes there is the one with
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For a logarithmically divergent integral f(±1) = 0, and I(a) = 0. On the other hand, if
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generically
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= f(1) � f(�1) 6= 0. (2.27)

In this case, shifting the integration variable changes the value of the integral.
A similar result holds for multidimensional linearly divergent integrals. We consider the
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To define the integral, we perform a Wick rotation into Euclidean space,
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. (2.29)

If the integral is linearly divergent, the function behave as |`E| �! 1 as
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`µE
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, (2.30)

where C is a numerical constant. Expanding the integrand in Eq. (2.29)
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(⇠) = i
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@fµ
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, (2.31)

we see how the integral over R4 can be expressed, using Gauss theorem in terms of an integral
at infinity. Given the behavior (2.30), the only terms that contributes there is the one with

12
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Back to the axial anomaly…
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Remember that applying the Feynman rules of QED, we had obtained

Having shown that the correlation function of one vector and one axial-vector current does
not contribute to the anomaly of the axial current, we study the second term in Eq. (2.14).
Again, we work in momentum space

e2h0|T [Jµ
A

(0)J↵
V

(x
1

)J�
V

(x
2

)]|0i =
Z

d4p

(2⇡)4

Z

d4q

(2⇡)4
i�µ↵�(p, q)eip·x1+iq·x2 , (2.20)

so the quantum conservation equation takes the form

@µhJµ
A

(x)iA =
i

2

Z

d4y
1

d4y
2

A ↵(y
1

)A �(y
2

) (2.21)

⇥
Z

d4p

(2⇡)4

Z

d4q

(2⇡)4
(p+ q)µi�µ↵�(p, q)e

ip·(y1�x)+iq·(y2�x).

To find whether the classical Ward identity (2.7) is corrected quantum mechanically, we
have to compute (p + q)µ�µ↵�(p, q). As in the previous computation, the Wick contractions
required to evaluate the previous correlation function can be summarized in terms of Feynman
diagrams. The momentum space correlation function i�µ↵�(p, q) is given at one loop by the
two Feynman diagrams

i�µ↵�(p, q) =

q�

p↵

(p+ q)µ +

q�

p↵

(p+ q)µ (2.22)

whose contributions can be found using the Feynman rules of QED

i�µ↵�(p, q) = e2

Z

d4`

(2⇡)4
Tr

✓

i

/̀� m+ i✏
�µ�5

i

/̀� /p � /q � m+ i✏
��

i

/̀� /p � m+ i✏
�↵

◆

+

✓

p $ q
↵ $ �

◆

. (2.23)

Linearly divergent integrals. These integrals are linearly divergent and therefore ambigu-
ous. To see what is meant by this, we look at a the simple integral

I(⇠) =

Z 1

�1
dx

h

f(x+ ⇠) � f(x)
i

. (2.24)

When the integral converges, a simple change of variables shows that I(⇠) = 0. To see what
happens when the integral diverges linearly or logarithmically, we expand the integrand of
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Linearly divergent integrals. These integrals are linearly divergent and therefore ambigu-
ous. To see what is meant by this, we look at a the simple integral

I(⇠) =

Z 1

�1
dx

h

f(x+ ⇠) � f(x)
i

. (2.24)

When the integral converges, a simple change of variables shows that I(⇠) = 0. To see what
happens when the integral diverges linearly or logarithmically, we expand the integrand of
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What is the relevance of the previous discussion?

one derivative, the remaining terms going to zero faster than the three powers contained in the
integration measure. Taking this into account, we have

Iµ
4

(⇠) =
i

16⇡4

Z

S3
1

d⌃↵⇠
↵fµ(`E) =

iC

16⇡4

⇠↵

Z

d⌦
3

`µE`
↵
E

`2E
, (2.32)

where d⌦
3

indicates the integration over all directions in four-dimensional Euclidean space.
Using asymptotic rotational invariance to write

Z

d⌦
3

`µE`
↵
E

`2E
=

1

4
�µ↵Vol(S3) =

⇡2

2
�µ↵, (2.33)

we finally get
Z

d4`

(2⇡)4

h

fµ(`+ ⇠) � fµ(`)
i

=
iC

32⇡2

⇠µ. (2.34)

As in the one-dimensional case, the value of the integral also depends on the shift.

The calculation of the triangle diagram. The previous discussion is very relevant for the
calculation of the diagrams in (2.22) because it implies that the value of the finite part of the
integral changes under shifts of the integration variable and therefore it depends on how we
label the loop momentum. For example,

`

`+ p

` � q

6= ` � p

`

` � p � q

(2.35)

We will see shortly that this ambiguity is fixed once the conservation of the vector current is
imposed3.

There are a number of properties of the function �µ↵�(p, q) that can be deduced from general
considerations. Due to the presence of the axial-vector current in the correlation function,
the amplitude is parity odd, so it should contain a Levi-Civita tensor. Given this, Poincaré
invariance leads to the following structure in terms of eight monomials

i�µ↵�(p, q) = f
1

✏µ↵��p
� + f

2

✏µ↵��q
� + f

3

✏µ↵��p�p
�q�

+ f
4

✏µ↵��q�p
�q� + f

5

✏µ���p↵p
�q� (2.36)

+ f
6

✏µ���q↵p
�q� + f

7

✏↵���pµp
�q� + f

8

✏↵���qµp
�q�,

3The reader probably noticed by now that the integral in Eq. (2.18) was also linearly divergent. However,
we have seen that it vanishes using only Lorentz invariance, without having to shift the integration momentum.
Meanwhile, in the case of Eq. (2.23) a cancellation between the contributions of the two triangle diagrams to
the anomaly can be achieved only at the price of shifting the loop momentum of one of the integrals. This is
precisely what it cannot be done in a linearly divergent integral.
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The value of the triangle diagram depends on how we parametrize the 
loop momentum!
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We start with the first term in the computation of                            :

Having shown that the correlation function of one vector and one axial-vector current does
not contribute to the anomaly of the axial current, we study the second term in Eq. (2.14).
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required to evaluate the previous correlation function can be summarized in terms of Feynman
diagrams. The momentum space correlation function i�µ↵�(p, q) is given at one loop by the
two Feynman diagrams
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whose contributions can be found using the Feynman rules of QED
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Linearly divergent integrals. These integrals are linearly divergent and therefore ambigu-
ous. To see what is meant by this, we look at a the simple integral

I(⇠) =

Z 1

�1
dx

h

f(x+ ⇠) � f(x)
i

. (2.24)

When the integral converges, a simple change of variables shows that I(⇠) = 0. To see what
happens when the integral diverges linearly or logarithmically, we expand the integrand of
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To find whether the classical Ward identity (2.7) is corrected quantum mechanically, we
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Linearly divergent integrals. These integrals are linearly divergent and therefore ambigu-
ous. To see what is meant by this, we look at a the simple integral

I(⇠) =

Z 1

�1
dx

h

f(x+ ⇠) � f(x)
i

. (2.24)
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To compute the Ward identity for the axial current, (p + q)µi�µ↵�(p, q), we go back to the
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where in the second line we have used the cyclic property of the trace and {�
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The integrand takes the form
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where in the second line we have used the cyclic property of the trace and {�
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15The last term is the one-loop contribution to The last term in Eq. (2.47) is the contribution of the two triangle diagrams with the axial
current replaced by the scalar bilinear 2m �
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which is the momentum space representation of the correlation function h �
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 . As we will see later,
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The two integrals are linearly divergent and have the structure

one derivative, the remaining terms going to zero faster than the three powers contained in the
integration measure. Taking this into account, we have

Iµ
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(⇠) =
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E

`2E
, (2.32)

where d⌦
3

indicates the integration over all directions in four-dimensional Euclidean space.
Using asymptotic rotational invariance to write

Z
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`µE`
↵
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=

1

4
�µ↵Vol(S3) =
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2
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we finally get
Z

d4`
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=
iC

32⇡2

⇠µ. (2.34)

As in the one-dimensional case, the value of the integral also depends on the shift.

The calculation of the triangle diagram. The previous discussion is very relevant for the
calculation of the diagrams in (2.22) because it implies that the value of the finite part of the
integral changes under shifts of the integration variable and therefore it depends on how we
label the loop momentum. For example,

`

`+ p

` � q

6= ` � p

`

` � p � q

(2.35)

We will see shortly that this ambiguity is fixed once the conservation of the vector current is
imposed3.

There are a number of properties of the function �µ↵�(p, q) that can be deduced from general
considerations. Due to the presence of the axial-vector current in the correlation function,
the amplitude is parity odd, so it should contain a Levi-Civita tensor. Given this, Poincaré
invariance leads to the following structure in terms of eight monomials

i�µ↵�(p, q) = f
1

✏µ↵��p
� + f

2

✏µ↵��q
� + f

3

✏µ↵��p�p
�q�

+ f
4

✏µ↵��q�p
�q� + f

5

✏µ���p↵p
�q� (2.36)

+ f
6

✏µ���q↵p
�q� + f

7

✏↵���pµp
�q� + f

8

✏↵���qµp
�q�,

3The reader probably noticed by now that the integral in Eq. (2.18) was also linearly divergent. However,
we have seen that it vanishes using only Lorentz invariance, without having to shift the integration momentum.
Meanwhile, in the case of Eq. (2.23) a cancellation between the contributions of the two triangle diagrams to
the anomaly can be achieved only at the price of shifting the loop momentum of one of the integrals. This is
precisely what it cannot be done in a linearly divergent integral.
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with

respectively.
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⇠µ = �pµ

⇠µ = qµ

(2.24) in powers of ⇠. The result is
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If the function f(x) grows at most like a constant as |x| ! 1, all terms with derivatives higher
than two are zero at infinity and do not contribute to the integral. Thus we have
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For a logarithmically divergent integral f(±1) = 0, and I(a) = 0. On the other hand, if
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Z 1

�1
dx

h

f(x+ ⇠) � f(x)
i

= f(1) � f(�1) 6= 0. (2.27)

In this case, shifting the integration variable changes the value of the integral.
A similar result holds for multidimensional linearly divergent integrals. We consider the
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#
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we see how the integral over R4 can be expressed, using Gauss theorem in terms of an integral
at infinity. Given the behavior (2.30), the only terms that contributes there is the one with

12
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We find the result
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integral (notice that the apparent quadratic divergences cancel due to antisymmetry of the ✏
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⇠µ = pµ and ⇠µ = �qµ respectively. Adding the two results for the two integrals, we find
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The axial Ward identity is violated in the limit             .m ! 0

The axial-vector symmetry is anomalous!

But not so fast… what happens with the vector current?

the these are linearly divergent so shifts in the integration momentum change the value of the
integral (notice that the apparent quadratic divergences cancel due to antisymmetry of the ✏
symbol). Still, using Eq. (2.34) we find that the shift in each of the two integrals is given by
⇠µ = pµ and ⇠µ = �qµ respectively. Adding the two results for the two integrals, we find

(p+ q)µi�µ↵�(p, q) =
ie2

4⇡2

✏↵��⌫p
�q⌫ + 2mi�↵�(p, q). (2.52)

But, what about the vector current? The relevant term to compute is

p↵i�µ↵�(p, q) = e2

Z

d4`

(2⇡)4
Tr

✓

i

/̀� m+ i✏
�µ�5

i

/̀� /p � /q � m+ i✏
��

i

/̀� /p � m+ i✏
/p

◆

(2.53)
+ e2

Z

d4`

(2⇡)4
Tr

✓

i

/̀� m+ i✏
�µ�5

i

/̀� /p � /q � m+ i✏
/p

i

/̀� /q � m+ i✏
��

◆

.

For each of the two traces, we use the identities

/p = (/̀� m) � (/̀� /p � m),

/p = �(/̀� /p � /q � m) + (/̀� /q � m), (2.54)

to write

p↵i�µ↵�(p, q) = ie2

Z

d4`

(2⇡)4
Tr

✓

�µ�5

i

/̀� /p � /q � m+ i✏
��

i

/̀� /p � m+ i✏

� �µ�5

i

/̀� /q � m+ i✏
��

i

/̀� m+ i✏

◆

� ie2

Z

d4`

(2⇡)4
Tr

✓

�µ�5

i

/̀� /p � /q � m+ i✏
��

i

/̀� m+ i✏
(2.55)

� �µ�5

i

/̀� /p � /q � m+ i✏
��

i

/̀� m+ i✏

◆

.

The second integrand is identically zero and we have

p↵i�µ↵�(p, q) = ie2

Z

d4`

(2⇡)4
Tr

✓

�µ�5

i

/̀� /p � /q � m+ i✏
��

i

/̀� /p � m+ i✏

� �µ�5

i

/̀� /q � m+ i✏
��

i

/̀� m+ i✏

◆

(2.56)

17



M.Á. Vázquez-Mozo                                                              Introduction to Anomalies in QFT                                                PhD Course, Universidad Autónoma de MadridM.Á. Vázquez-Mozo                                                              Introduction to Anomalies in QFT                                                PhD Course, Universidad Autónoma de Madrid

the these are linearly divergent so shifts in the integration momentum change the value of the
integral (notice that the apparent quadratic divergences cancel due to antisymmetry of the ✏
symbol). Still, using Eq. (2.34) we find that the shift in each of the two integrals is given by
⇠µ = pµ and ⇠µ = �qµ respectively. Adding the two results for the two integrals, we find

(p+ q)µi�µ↵�(p, q) =
ie2

4⇡2

✏↵��⌫p
�q⌫ + 2mi�↵�(p, q). (2.52)

But, what about the vector current? The relevant term to compute is

p↵i�µ↵�(p, q) = e2

Z

d4`

(2⇡)4
Tr

✓

i

/̀� m+ i✏
�µ�5

i

/̀� /p � /q � m+ i✏
��

i

/̀� /p � m+ i✏
/p

◆

(2.53)
+ e2

Z

d4`

(2⇡)4
Tr

✓

i

/̀� m+ i✏
�µ�5

i

/̀� /p � /q � m+ i✏
/p

i

/̀� /q � m+ i✏
��

◆

.

For each of the two traces, we use the identities

/p = (/̀� m) � (/̀� /p � m),

/p = �(/̀� /p � /q � m) + (/̀� /q � m), (2.54)

to write

p↵i�µ↵�(p, q) = ie2

Z

d4`

(2⇡)4
Tr

✓

�µ�5

i

/̀� /p � /q � m+ i✏
��

i

/̀� /p � m+ i✏

� �µ�5

i

/̀� /q � m+ i✏
��

i

/̀� m+ i✏

◆

� ie2

Z

d4`

(2⇡)4
Tr

✓

�µ�5

i

/̀� /p � /q � m+ i✏
��

i

/̀� m+ i✏
(2.55)

� �µ�5

i

/̀� /p � /q � m+ i✏
��

i

/̀� m+ i✏

◆

.

The second integrand is identically zero and we have

p↵i�µ↵�(p, q) = ie2

Z

d4`

(2⇡)4
Tr

✓

�µ�5

i

/̀� /p � /q � m+ i✏
��

i

/̀� /p � m+ i✏

� �µ�5

i

/̀� /q � m+ i✏
��

i

/̀� m+ i✏

◆

(2.56)

17

Using the identities

the these are linearly divergent so shifts in the integration momentum change the value of the
integral (notice that the apparent quadratic divergences cancel due to antisymmetry of the ✏
symbol). Still, using Eq. (2.34) we find that the shift in each of the two integrals is given by
⇠µ = pµ and ⇠µ = �qµ respectively. Adding the two results for the two integrals, we find

(p+ q)µi�µ↵�(p, q) =
ie2

4⇡2

✏↵��⌫p
�q⌫ + 2mi�↵�(p, q). (2.52)

But, what about the vector current? The relevant term to compute is

p↵i�µ↵�(p, q) = e2

Z

d4`

(2⇡)4
Tr

✓

i

/̀� m+ i✏
�µ�5

i

/̀� /p � /q � m+ i✏
��

i

/̀� /p � m+ i✏
/p

◆

(2.53)
+ e2

Z

d4`

(2⇡)4
Tr

✓

i

/̀� m+ i✏
�µ�5

i

/̀� /p � /q � m+ i✏
/p

i

/̀� /q � m+ i✏
��

◆

.

For each of the two traces, we use the identities

/p = (/̀� m) � (/̀� /p � m),

/p = �(/̀� /p � /q � m) + (/̀� /q � m), (2.54)

to write

p↵i�µ↵�(p, q) = ie2

Z

d4`

(2⇡)4
Tr

✓

�µ�5

i

/̀� /p � /q � m+ i✏
��

i

/̀� /p � m+ i✏

� �µ�5

i

/̀� /q � m+ i✏
��

i

/̀� m+ i✏

◆

� ie2

Z

d4`

(2⇡)4
Tr

✓

�µ�5

i

/̀� /p � /q � m+ i✏
��

i

/̀� m+ i✏
(2.55)

� �µ�5

i

/̀� /p � /q � m+ i✏
��

i

/̀� m+ i✏

◆

.

The second integrand is identically zero and we have

p↵i�µ↵�(p, q) = ie2

Z

d4`

(2⇡)4
Tr

✓

�µ�5

i

/̀� /p � /q � m+ i✏
��

i

/̀� /p � m+ i✏

� �µ�5

i

/̀� /q � m+ i✏
��

i

/̀� m+ i✏

◆

(2.56)

17

the these are linearly divergent so shifts in the integration momentum change the value of the
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the these are linearly divergent so shifts in the integration momentum change the value of the
integral (notice that the apparent quadratic divergences cancel due to antisymmetry of the ✏
symbol). Still, using Eq. (2.34) we find that the shift in each of the two integrals is given by
⇠µ = pµ and ⇠µ = �qµ respectively. Adding the two results for the two integrals, we find
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= 0

(no shift required)
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The remaining integral
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has again the structure

one derivative, the remaining terms going to zero faster than the three powers contained in the
integration measure. Taking this into account, we have
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indicates the integration over all directions in four-dimensional Euclidean space.
Using asymptotic rotational invariance to write
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As in the one-dimensional case, the value of the integral also depends on the shift.

The calculation of the triangle diagram. The previous discussion is very relevant for the
calculation of the diagrams in (2.22) because it implies that the value of the finite part of the
integral changes under shifts of the integration variable and therefore it depends on how we
label the loop momentum. For example,

`

`+ p

` � q

6= ` � p

`

` � p � q

(2.35)

We will see shortly that this ambiguity is fixed once the conservation of the vector current is
imposed3.

There are a number of properties of the function �µ↵�(p, q) that can be deduced from general
considerations. Due to the presence of the axial-vector current in the correlation function,
the amplitude is parity odd, so it should contain a Levi-Civita tensor. Given this, Poincaré
invariance leads to the following structure in terms of eight monomials
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3The reader probably noticed by now that the integral in Eq. (2.18) was also linearly divergent. However,
we have seen that it vanishes using only Lorentz invariance, without having to shift the integration momentum.
Meanwhile, in the case of Eq. (2.23) a cancellation between the contributions of the two triangle diagrams to
the anomaly can be achieved only at the price of shifting the loop momentum of one of the integrals. This is
precisely what it cannot be done in a linearly divergent integral.
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with

⇠µ = �pµ

Reducing the denominators, the result is
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Again, we have two terms inside each integral related by a shift in the loop momentum ⇠µ = �pµ.
Applying again Eq. (2.34) we find

p↵i�µ↵�(p, q) = � ie2

8⇡2

✏µ��⌫p
�q⌫ (2.58)

Our results (2.52) and (2.58) are rather puzzling. We have found that although there is an
anomaly both in the vector and the axial-vector current! This is a disaster, since the vector
current couples to a gauge field and its non conservation renders the theory inconsistent. Going
back to our generic analysis carried out above, it seems that our computation have failed to
impose vector current conservation properly.

To solve this problem, we have to take into account that the very result we have found is
intrinsically ambiguous. The right-hand side of Eqs. (2.52) and (2.58) depend in fact on how the
loop momentum in each of the two triangle diagrams is parametrized in the first place. In fact,
the value of the anomaly of the axial and vector currents depends on how this parametrization
is chosen. To see this in detail, we go back to the correlation function i�µ↵�(p, q) shown in Eq.
(2.23) to see how it changes when the loop momentum is reparametrized.

Fortunately, we do not need to repeat the whole calculation since the change in the amplitude
can be written from general considerations. Lorentz invariance, parity, and Bose symmetry
imply that under a general shift of the loop momentum ` the amplitude changes as

i�µ↵�(p, q) �! i�µ↵�(p, q) +
ie2

8⇡2

a✏µ↵��(p � q)�, (2.59)

where a is a numerical constant that depends on the shift. Using our results (2.52) and (2.58),
we find the anomalous axial-vector Ward identity take the form

(p+ q)µi�µ↵�(p, q) =
ie2

4⇡2

(1 � a)✏µ��⌫p
�q⌫ + 2mi�↵�(p, q),

p↵i�µ↵�(p, q) = � ie2

8⇡2

(1 + a)✏↵��⌫p
�q⌫ . (2.60)

Choosing a loop momentum for which a = �1, we arrive at the conservation of the vector
current

p↵i�µ↵�(p, q) = 0, (2.61)
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The computation shows that the gauge Ward identity is violated!
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current couples to a gauge field and its non conservation renders the theory inconsistent. Going
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impose vector current conservation properly.

To solve this problem, we have to take into account that the very result we have found is
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But remember the ambiguity in parametrizing the loop momentum. It seems 
we made the wrong choice…

Changing the parametrization

i�µ↵�(p, q) �! i�µ↵�(p, q) +�µ↵�(↵,�)

introduces a change in the amplitude

Can we select α and β so the vector Ward identity is enforced?

`µ �! `µ + ↵pµ + �qµ
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Luckily, we don’t have to redo the whole computation! Imposing:

• Lorentz invariance

• Bose symmetry

• Parity

and remembering that the ambiguity does not depend on masses, we 
only have one possibility for the change in the amplitude
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where a = a(↵,�)
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Using now our results for the triangle diagrams

Thus, the physically correct choice is to take              for which

Reducing the denominators, the result is
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Again, we have two terms inside each integral related by a shift in the loop momentum ⇠µ = �pµ.
Applying again Eq. (2.34) we find

p↵i�µ↵�(p, q) = � ie2

8⇡2

✏µ��⌫p
�q⌫ (2.58)

Our results (2.52) and (2.58) are rather puzzling. We have found that although there is an
anomaly both in the vector and the axial-vector current! This is a disaster, since the vector
current couples to a gauge field and its non conservation renders the theory inconsistent. Going
back to our generic analysis carried out above, it seems that our computation have failed to
impose vector current conservation properly.

To solve this problem, we have to take into account that the very result we have found is
intrinsically ambiguous. The right-hand side of Eqs. (2.52) and (2.58) depend in fact on how the
loop momentum in each of the two triangle diagrams is parametrized in the first place. In fact,
the value of the anomaly of the axial and vector currents depends on how this parametrization
is chosen. To see this in detail, we go back to the correlation function i�µ↵�(p, q) shown in Eq.
(2.23) to see how it changes when the loop momentum is reparametrized.

Fortunately, we do not need to repeat the whole calculation since the change in the amplitude
can be written from general considerations. Lorentz invariance, parity, and Bose symmetry
imply that under a general shift of the loop momentum ` the amplitude changes as

i�µ↵�(p, q) �! i�µ↵�(p, q) +
ie2

8⇡2

a✏µ↵��(p � q)�, (2.59)

where a is a numerical constant that depends on the shift. Using our results (2.52) and (2.58),
we find the anomalous axial-vector Ward identity take the form
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8⇡2

(1 + a)✏↵��⌫p
�q⌫ . (2.60)

Choosing a loop momentum for which a = �1, we arrive at the conservation of the vector
current

p↵i�µ↵�(p, q) = 0, (2.61)

18

a = �1

The axial-vector current is anomalous!

It is important that there is no value of a for which both Ward identities are 
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where the conservation equation of the axial-vector current picks up an anomalous term that
survives in the massless limit

(p+ q)µi�µ↵�(p, q) =
ie2

2⇡2

✏↵��⌫p
�q⌫ + 2mi�↵�(p, q) (2.62)

Looking at (2.60) we notice another important point. There is no value of a for which both
Ward identities are simultaneously satisfied. This is a general feature of the axial anomaly.
There is a tension between vector and axial-vector current conservation. Of course, the only
physical choice is the one we took: the vector current coupling to the photon has to be conserved
to preserve the consistency of QED.

To find the corresponding expressions for the expectation value of the axial current diver-
gence in position space, we only have to use Eq. (2.21). After a couple of integrations by parts,
we find

@µhJµ
A(x)iA =

e2

16⇡2

✏µ⌫↵�Fµ⌫F↵� + 2imh (x)�
5

 (x)iA . (2.63)

The second term is the quantum version of the right-hand side of the classical equation (2.7).
The first term, however, is completely new and independent of the fermion mass. This means
that it survive the limit m ! 0 where the theory is classically invariant under chiral transfor-
mations. This spoils the Ward identity associated with the conservation of the axial current
and the corresponding symmetry is anomalous, i.e. broken by quantum e↵ects. This result is
the celebrated Adler-Bell-Jackiw anomaly [3, 4]

(p+ q)µi�µ↵�(p, q) =
ie2~
2⇡2

✏↵���p
�q�, (2.64)

or in position space

@µhJµ
A(x)iA =

e2~
16⇡2

✏µ⌫↵�Fµ⌫F↵�. (2.65)

Here we have restored the powers of ~ to stress the quantum nature of the axial anomaly.
The calculation we have presented highlights the fact that the axial anomaly in QED is

the result of Bose symmetry and both Lorentz and gauge invariance, and is determined by
ultraviolet finite integrals. All ambiguities associated with the linearly divergent integral has
been fixed by requiring that the quantum theory satisfies the vector Ward identity at one
loop. The anomaly can be then calculated using any regularization scheme preserving gauge
invariance, such as Pauli-Villars or dimensional regularization4 (see, for example, [9, 8]). As we
have seen, the anomaly is independent of the particular method used as far as it preserves the
vector Ward identity.

4The use of dimensional regularization requires some care due to the problem of defining the chirality matrix
for general dimensions.
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The result for the axial anomaly can be obtained computing the triangle 
diagram using any regularization method that preserves gauge invariance: 
e.g.

• Pauli-Villars (see Bertlmann)

• Dimensional regularization, but beware of 𝜸5 (see Peskin & Schroeder)

In our calculation we did not commit to any particular regularization 
method (in fact, we didn’t have to), only to the preservation of gauge 
invariance.

• Dispersion relations (see Bertlmann)

• Point-splitting (wait and see)
…
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Transforming the result back to position space,

we arrive at the celebrated Adler-Bell-Jackiw anomaly

Julian Schwinger
(1918-1994)

Having shown that the correlation function of one vector and one axial-vector current does
not contribute to the anomaly of the axial current, we study the second term in Eq. (2.14).
Again, we work in momentum space
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so the quantum conservation equation takes the form
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To find whether the classical Ward identity (2.7) is corrected quantum mechanically, we
have to compute (p + q)µ�µ↵�(p, q). As in the previous computation, the Wick contractions
required to evaluate the previous correlation function can be summarized in terms of Feynman
diagrams. The momentum space correlation function i�µ↵�(p, q) is given at one loop by the
two Feynman diagrams

i�µ↵�(p, q) =

q�
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(p+ q)µ +

q�

p↵

(p+ q)µ (2.22)

whose contributions can be found using the Feynman rules of QED
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Linearly divergent integrals. These integrals are linearly divergent and therefore ambigu-
ous. To see what is meant by this, we look at a the simple integral

I(⇠) =

Z 1

�1
dx

h

f(x+ ⇠) � f(x)
i

. (2.24)

When the integral converges, a simple change of variables shows that I(⇠) = 0. To see what
happens when the integral diverges linearly or logarithmically, we expand the integrand of
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