Shedding light on our calculation

Why didn't we have to commit to any particular regularization?
The amplitude $i \Gamma_{\mu \alpha \beta}(p, q)$ should satisfy a number of condition:

- Parity: begin parity odd, it should contain an $\epsilon_{\mu \nu \alpha \beta}$ tensor
- Poincaré invariance: it should be a rank-three tensor depending only on p and q
This forces the following general structure for the amplitude

$$
\begin{aligned}
i \Gamma_{\mu \alpha \beta}(p, q) & =f_{1} \epsilon_{\mu \alpha \beta \sigma} p^{\sigma}+f_{2} \epsilon_{\mu \alpha \beta \sigma} q^{\sigma}+f_{3} \epsilon_{\mu \alpha \sigma \lambda} p_{\beta} p^{\sigma} q^{\lambda} \\
& +f_{4} \epsilon_{\mu \alpha \sigma \lambda} q_{\beta} p^{\sigma} q^{\lambda}+f_{5} \epsilon_{\mu \beta \sigma \lambda} p_{\alpha} p^{\sigma} q^{\lambda} \\
& +f_{6} \epsilon_{\mu \beta \sigma \lambda} q_{\alpha} p^{\sigma} q^{\lambda}+f_{7} \epsilon_{\alpha \beta \sigma \lambda} p_{\mu} p^{\sigma} q^{\lambda}+f_{8}(p, q) \\
& \epsilon_{\alpha \beta \sigma \lambda} q_{\mu} p^{\sigma} q^{\lambda}
\end{aligned}
$$

where f_{i} are scalar functions of the momenta. Moreover, using

$$
\epsilon_{\alpha \beta \sigma \lambda} w_{\mu}+\epsilon_{\beta \sigma \lambda \mu} w_{\alpha}+\epsilon_{\sigma \lambda \mu \alpha} w_{\beta}+\epsilon_{\lambda \mu \alpha \beta} w_{\sigma}+\epsilon_{\mu \alpha \beta \sigma} w_{\lambda}=0
$$

we can absorb f_{7} and f_{8} into the other f 's.

$$
\begin{aligned}
i \Gamma_{\mu \alpha \beta}(p, q) & =f_{1} \epsilon_{\mu \alpha \beta \sigma} p^{\sigma}+f_{2} \epsilon_{\mu \alpha \beta \sigma} q^{\sigma}+f_{3} \epsilon_{\mu \alpha \sigma \lambda} p_{\beta} p^{\sigma} q^{\lambda} \\
& +f_{4} \epsilon_{\mu \alpha \sigma \lambda} q_{\beta} p^{\sigma} q^{\lambda}+f_{5} \epsilon_{\mu \beta \sigma \lambda} p_{\alpha} p^{\sigma} q^{\lambda}+f_{6} \epsilon_{\mu \beta \sigma \lambda} q_{\alpha} p^{\sigma} q^{\lambda}
\end{aligned}
$$

- Bose symmetry: it should satisfy $i \Gamma_{\mu \alpha \beta}(p, q)=i \Gamma_{\mu \beta \alpha}(q, p)$

This imposes the following conditions on the coefficients

$$
f_{1}(p, q)=-f_{2}(q, p), \quad f_{3}(p, q)=-f_{6}(q, p), \quad f_{4}(p, q)=-f_{5}(q, p) .
$$

Let's do a bit of dimensional analysis:

$$
\left[i \Gamma_{\mu \alpha \beta}\right]=E \quad\left\{\begin{array}{l}
{\left[f_{1}\right]=\left[f_{2}\right]=E^{0}} \\
{\left[f_{3}\right]=\ldots=\left[f_{6}\right]=E^{-2}}
\end{array}\right.
$$

By power counting, f_{1} and f_{2} are logarithmically divergent integrals while f_{3}, \ldots, f_{6} are convergent integrals.

$$
\begin{aligned}
i \Gamma_{\mu \alpha \beta}(p, q) & =f_{1} \epsilon_{\mu \alpha \beta \sigma} p^{\sigma}+f_{2} \epsilon_{\mu \alpha \beta \sigma} q^{\sigma}+f_{3} \epsilon_{\mu \alpha \sigma \lambda} p_{\beta} p^{\sigma} q^{\lambda} \\
& +f_{4} \epsilon_{\mu \alpha \sigma \lambda} q_{\beta} p^{\sigma} q^{\lambda}+f_{5} \epsilon_{\mu \beta \sigma \lambda} p_{\alpha} p^{\sigma} q^{\lambda}+f_{6} \epsilon_{\mu \beta \sigma \lambda} q_{\alpha} p^{\sigma} q^{\lambda}
\end{aligned}
$$

All ambiguities in the amplitude are confined to the coefficients f_{1} and f_{2}.
Next we look at the contractions

$$
\begin{aligned}
p^{\alpha} i \Gamma_{\mu \alpha \beta}(p, q) & =\left(f_{2}-p^{2} f_{5}-p \cdot q f_{6}\right) \epsilon_{\mu \beta \alpha \sigma} q^{\alpha} p^{\sigma}, \\
q^{\beta} i \Gamma_{\mu \alpha \beta}(p, q) & =\left(f_{1}-q^{2} f_{4}-p \cdot q f_{3}\right) \epsilon_{\mu \alpha \beta \sigma} q^{\beta} p^{\sigma}, \\
(p+q)^{\mu} i \Gamma_{\mu \alpha \beta}(p, q) & =\left(-f_{1}+f_{2}\right) \epsilon_{\alpha \beta \sigma \lambda} q^{\sigma} p^{\lambda} .
\end{aligned}
$$

Imposing the vector (gauge) Ward identities

$$
p^{\alpha} i \Gamma_{\mu \alpha \beta}(p, q)=0=q^{\beta} i \Gamma_{\mu \alpha \beta}(p, q)
$$

completely fixes the ambiguous integrals in terms of finite ones

$$
\begin{aligned}
& f_{1}(p, q)=q^{2} f_{4}(p, q)-p \cdot q f_{3}(p, q) \\
& f_{2}(p, q)=p^{2} f_{5}(p, q)-p \cdot q f_{6}(p, q)
\end{aligned}
$$

Using these identities, the axial anomaly is given by

$$
(p+q)^{\mu} i \Gamma_{\mu \alpha \beta}(p, q)=\left[p^{2} f_{5}-q^{2} f_{4}+p \cdot q\left(-f_{3}+f_{6}\right)\right] \epsilon_{\alpha \beta \sigma \lambda} q^{\sigma} p^{\lambda}
$$

With these general considerations we learn a number of things:

- All ambiguities in the triangle diagram are codified in nominally logarithmically divergent integrals.
- These are completely fixed by requiring the conservation of the gauge current.
- Once this is done, the axial anomaly is given by finite integrals.

Using these identities, the axial anomaly is given by

$$
(p+q)^{\mu} i \Gamma_{\mu \alpha \beta}(p, q)=\left[p^{2} f_{5}-q^{2} f_{4}+p \cdot q\left(-f_{3}+f_{6}\right)\right] \epsilon_{\alpha \beta \sigma \lambda} q^{\sigma} p^{\lambda}
$$

With these general considerations we learn a number of things:

- All ambiguities in the triangle diagram are codified in nominally logarithmically divergent integrals.
- These are comp why logarithmically divergent? the gauge curr
- Once this is done,

$$
\begin{aligned}
& \int \frac{d^{4} \ell}{(2 \pi)^{4}}\left[f^{\mu}(\ell+\xi)-f^{\mu}(\ell)\right]=\left.\xi^{\alpha} \int \frac{d^{4} \ell}{(2 \pi)^{4}} \frac{\partial f^{\mu}}{\partial \ell^{\alpha}}\right|_{\xi=0} \\
&\left(\underset{\sim O}{ }\left(\frac{1}{\ell^{4}}\right)\right.
\end{aligned}
$$

Using these identities, the axial anomaly is given by

$$
(p+q)^{\mu} i \Gamma_{\mu \alpha \beta}(p, q)=\left[p^{2} f_{5}-q^{2} f_{4}+p \cdot q\left(-f_{3}+f_{6}\right)\right] \epsilon_{\alpha \beta \sigma \lambda} q^{\sigma} p^{\lambda}
$$

With these general considerations we learn a number of things:

- All ambiguities in the triangle diagram are codified in nominally logarithmically divergent integrals.
- These are completely fixed by requiring the conservation of the gauge current.
- Once this is done, the axial anomaly is given by finite integrals.

An alternative procedure

The anomaly can be reobtained using a point-splitting regularization of the axial-vector current composite operator

$$
J_{\mathrm{A}}^{\mu}(x)_{\mathrm{reg}}=\bar{\psi}\left(x+\frac{\epsilon}{2}\right) \gamma_{\mu} \gamma_{5} \psi\left(x-\frac{\epsilon}{2}\right) \exp \left[i e a \int_{x-\epsilon / 2}^{x+\epsilon / 2} d y_{\alpha} \mathscr{A}^{\alpha}(y)\right]
$$

where $a \in \mathbb{R}$ and ϵ^{μ} satisfies $\epsilon^{0}>0$

Under a gauge transformation

$$
\left.\begin{array}{c}
\psi\left(x-\frac{\epsilon}{2}\right) \longrightarrow e^{i \alpha\left(x-\frac{\epsilon}{2}\right)} \psi\left(x-\frac{\epsilon}{2}\right) \\
\bar{\psi}\left(x+\frac{\epsilon}{2}\right) \longrightarrow e^{-i \alpha\left(x+\frac{\epsilon}{2}\right)} \bar{\psi}\left(x+\frac{\epsilon}{2}\right) \\
\mathscr{A}_{\mu}(y) \longrightarrow \mathscr{A}_{\mu}(y)+\frac{1}{e} \partial_{\mu} \epsilon(y)
\end{array}\right\} \quad J_{\mathrm{A}}^{\mu}(x)_{\mathrm{reg}} \longrightarrow e^{i(a-1)\left[\alpha\left(x+\frac{\epsilon}{2}\right)-\alpha\left(x-\frac{\epsilon}{2}\right)\right]} J_{\mathrm{A}}^{\mu}(x)_{\mathrm{reg}}
$$

The regularization is gauge invariant only for $a=1$

$$
J_{\mathrm{A}}^{\mu}(x)_{\mathrm{reg}}=\bar{\psi}\left(x+\frac{\epsilon}{2}\right) \gamma^{\mu} \gamma_{5} \psi\left(x-\frac{\epsilon}{2}\right) \exp \left[i e a \int_{x-\epsilon / 2}^{x+\epsilon / 2} d y_{\alpha} \mathscr{A}^{\alpha}(y)\right]
$$

We compute now its divergence

$$
\begin{aligned}
& \partial_{\mu} J_{\mathrm{A}}^{\mu}(x)_{\mathrm{reg}}= \partial_{\mu} \bar{\psi}\left(x+\frac{\epsilon}{2}\right) \gamma^{\mu} \gamma_{5} \psi\left(x-\frac{\epsilon}{2}\right) \exp \left[i e a \int_{x-\epsilon / 2}^{x+\epsilon / 2} d y_{\alpha} \mathscr{A}^{\alpha}(y)\right] \\
&+\bar{\psi}\left(x+\frac{\epsilon}{2}\right) \gamma^{\mu} \gamma_{5} \partial_{\mu} \psi\left(x-\frac{\epsilon}{2}\right) \exp \left[i e a \int_{x-\epsilon / 2}^{x+\epsilon / 2} d y_{\alpha} \mathscr{A}^{\alpha}(y)\right] \\
&+ i e \bar{\psi}\left(x+\frac{\epsilon}{2}\right) \gamma^{\mu} \gamma_{5} \psi\left(x-\frac{\epsilon}{2}\right)\left[a \partial_{\mu} \int_{x-\epsilon / 2}^{x+\epsilon / 2} d y_{\alpha} \mathscr{A}^{\alpha}(y)\right] \\
& \times \exp \left[i e a \int_{x-\epsilon / 2}^{x+\epsilon / 2} d y_{\alpha} \mathscr{A}^{\alpha}(y)\right]
\end{aligned}
$$

and use the fermion EOM

$$
i \gamma^{\mu} \partial_{\mu} \psi=m \psi-e \mathscr{A}_{\mu} \gamma^{\mu} \psi \quad-i \partial_{\mu} \bar{\psi} \gamma^{\mu}=m \bar{\psi}-e \bar{\psi} \gamma^{\mu} \mathscr{A}_{\mu}
$$

$$
\begin{aligned}
& \partial_{\mu} J_{\mathrm{A}}^{\mu}(x)_{\mathrm{reg}}= 2 i m\left[\bar{\psi} \gamma_{5} \psi\right]_{\mathrm{reg}}-i e \bar{\psi}\left(x+\frac{\epsilon}{2}\right) \gamma^{\mu} \gamma_{5} \psi\left(x-\frac{\epsilon}{2}\right) \\
& \times\left[\mathscr{A}_{\mu}\left(x+\frac{\epsilon}{2}\right)-\mathscr{A}_{\mu}\left(x-\frac{\epsilon}{2}\right)-a \partial_{\mu} \int_{x-\epsilon / 2}^{x+\epsilon / 2} d y^{\alpha} \mathscr{A}_{\alpha}(y)\right] \\
& \times \exp \left[i e a \int_{x-\epsilon / 2}^{x+\epsilon / 2} d y_{\alpha} \mathscr{A}^{\alpha}(y)\right]
\end{aligned}
$$

Identifying $J_{\mathrm{A}}^{\mu}(x)_{\text {reg }}$ and expanding to first order in ϵ^{μ} we have

$$
\partial_{\mu} J_{\mathrm{A}}^{\mu}(x)_{\mathrm{reg}}=2 i m\left[\bar{\psi} \gamma_{5} \psi\right]_{\mathrm{reg}}-i J_{\mathrm{A}}^{\mu}(x)_{\mathrm{reg}} \epsilon^{\alpha}\left(\partial_{\alpha} \mathscr{A}_{\mu}-a \partial_{\mu} \mathscr{A}_{\alpha}+\ldots\right)
$$

and now compute its vacuum expectation value

$$
\partial_{\mu}\left\langle J_{\mathrm{A}}^{\mu}(x)_{\mathrm{reg}}\right\rangle_{\mathscr{A}}=2 i m\left\langle\left[\bar{\psi} \gamma_{5} \psi\right]_{\mathrm{reg}}\right\rangle_{\mathscr{A}}-i e \epsilon^{\alpha}\left\langle J_{\mathrm{A}}^{\mu}(x)_{\mathrm{reg}}\right\rangle_{\mathscr{A}}\left(\partial_{\alpha} \mathscr{A}_{\mu}-a \partial_{\mu} \mathscr{A}_{\alpha}+\ldots\right)
$$

$$
\begin{aligned}
& \partial_{\mu} J_{\mathrm{A}}^{\mu}(x)_{\mathrm{reg}}= 2 i m\left[\bar{\psi} \gamma_{5} \psi\right]_{\mathrm{reg}}-i e \bar{\psi}\left(x+\frac{\epsilon}{2}\right) \gamma^{\mu} \gamma_{5} \psi\left(x-\frac{\epsilon}{2}\right) \\
& \times\left[\mathscr{A}_{\mu}\left(x+\frac{\epsilon}{2}\right)-\mathscr{A}_{\mu}\left(x-\frac{\epsilon}{2}\right)-a \partial_{\mu} \int_{x-\epsilon / 2}^{x+\epsilon / 2} d y^{\alpha} \mathscr{A}_{\alpha}(y)\right] \\
& \times \exp \left[i e a \int_{x-\epsilon / 2}^{x+\epsilon / 2} d y_{\alpha} \mathscr{A}^{\alpha}(y)\right]
\end{aligned}
$$

Identifying $J_{\mathrm{A}}^{\mu}(x)_{\text {reg }}$ and expanding to first order in ϵ^{μ} we have

$$
\partial_{\mu} J_{\mathrm{A}}^{\mu}(x)_{\mathrm{reg}}=2 i m\left[\bar{\psi} \gamma_{5} \psi\right]_{\mathrm{reg}}-i J_{\mathrm{A}}^{\mu}(x)_{\mathrm{reg}} \epsilon^{\alpha}\left(\partial_{\alpha} \mathscr{A}_{\mu}-@ \partial_{\mu} \mathscr{A}_{\alpha}+\ldots\right)
$$

and now compute its vacuum expectation value

$$
\partial_{\mu}\left\langle J_{\mathrm{A}}^{\mu}(x)_{\mathrm{reg}}\right\rangle_{\mathscr{A}}=2 i m\left\langle\left[\bar{\psi} \gamma_{5} \psi\right]_{\mathrm{reg}}\right\rangle_{\mathscr{A}}-i e \epsilon^{\alpha}\left\langle J_{\mathrm{A}}^{\mu}(x)_{\mathrm{reg}}\right\rangle_{\mathscr{A}}\left(\partial_{\alpha} \mathscr{A}_{\mu}-a \mathscr{A}_{\mu} \mathscr{A}_{\alpha}+\ldots\right)
$$

Next, we evaluate $\left\langle J_{\mathrm{A}}^{\mu}(x)_{\mathrm{reg}}\right\rangle_{\mathscr{A}}$

$$
\begin{aligned}
\left\langle J_{\mathrm{A}}^{\mu}(x)_{\mathrm{reg}}\right\rangle_{\mathscr{A}}=\left\langle\bar{\psi}\left(x+\frac{\epsilon}{2}\right)\right. & \left.\gamma^{\mu} \gamma_{5} \psi\left(x-\frac{\epsilon}{2}\right)\right\rangle_{\mathscr{A}} \exp \left[i e a \int_{x-\epsilon / 2}^{x+\epsilon / 2} d y_{\alpha} \mathscr{A}^{\alpha}(y)\right] \\
\gamma_{a b}^{\mu} \gamma_{5 b c}\langle T & {\left.\left[\bar{\psi}_{a}\left(x+\frac{\epsilon}{2}\right) \psi_{c}\left(x-\frac{\epsilon}{2}\right)\right]\right\rangle_{\mathscr{A}} } \\
& =-\operatorname{Tr}\left\{\gamma^{\mu} \gamma_{5}\left\langle T\left[\psi\left(x-\frac{\epsilon}{2}\right) \bar{\psi}\left(x+\frac{\epsilon}{2}\right)\right]\right\rangle_{\mathscr{A}}\right\} \\
& =-\operatorname{Tr}\left[\gamma^{\mu} \gamma_{5} G\left(x-\frac{\epsilon}{2}, x+\frac{\epsilon}{2}\right)_{\mathscr{A}}\right]
\end{aligned}
$$

where the propagator can be computed diagrammatically as:

$$
G(x, y)_{\mathscr{A}}=\underset{x}{ } y+\underset{x}{ }+{ }_{x}+\underset{x}{ }+{ }_{x} \not{ }_{x}+\ldots
$$

$$
G(x, y)_{\mathscr{A}}={ }_{x} \longrightarrow y+{ }_{x} \rightarrow{ }_{y}+\underset{x}{ } \rightarrow \underset{x}{ }+\ldots
$$

We look at the term linear in the gauge field:

$\underset{x-\frac{\epsilon}{2}}{\longrightarrow} \underset{x+\frac{\epsilon}{2}}{ }=i e \int \frac{d^{4} p}{(2 \pi)^{4}} \int \frac{d^{4} q}{(2 \pi)^{4}}\left(\frac{i}{\not p+\frac{1}{2} \phi-m} \gamma^{\mu} \frac{i}{\not p-\frac{1}{2} \phi-m}\right) e^{-i q \cdot x} e^{i p \cdot \epsilon} \mathscr{A}_{\mu}(q)$

With this we go back to
$\partial_{\mu}\left\langle J_{\mathrm{A}}^{\mu}(x)_{\mathrm{reg}}\right\rangle_{\mathscr{A}}=2 i m\left\langle\left[\bar{\psi} \gamma_{5} \psi\right]_{\mathrm{reg}}\right\rangle_{\mathscr{A}}-i e \epsilon^{\alpha}\left\langle J_{\mathrm{A}}^{\mu}(x)_{\mathrm{reg}}\right\rangle_{\mathscr{A}}\left(\partial_{\alpha} \mathscr{A}_{\mu}-a \partial_{\mu} \mathscr{A}_{\alpha}+\ldots\right)$ and

$$
\left\langle J_{\mathrm{A}}^{\mu}(x)\right\rangle_{\mathscr{A}}=-\operatorname{Tr}\left[\gamma^{\mu} \gamma_{5} G\left(x-\frac{\epsilon}{2}, x+\frac{\epsilon}{2}\right)_{\mathscr{A}}\right] \exp \left[i e a \int_{x-\epsilon / 2}^{x+\epsilon / 2} d y_{\alpha} \mathscr{A}^{\alpha}(y)\right]
$$

$$
G(x, y)_{\mathscr{A}}=\underset{x}{ } \longrightarrow{ }_{x} \rightarrow{ }_{x}+\underset{x}{\longrightarrow} y{ }_{x} \not{ }_{x}+\ldots
$$

We look at the term linear in the gauge field:

$\underset{x-\frac{\epsilon}{2}}{\longrightarrow} \underset{x+\frac{\epsilon}{2}}{ }=i e \int \frac{d^{4} p}{(2 \pi)^{4}} \int \frac{d^{4} q}{(2 \pi)^{4}}\left(\frac{i}{p p+\frac{1}{2} \phi-m} \gamma^{\mu} \frac{i}{p p-\frac{1}{2} q-m}\right) e^{-i q \cdot x} \int e^{i p \cdot \cdot} \mathscr{A}_{\mu}(q)$

With this we go back to
$\left.\left.\partial_{\mu}\left\langle J_{\mathrm{A}}^{\mu}(x)_{\mathrm{reg}}\right\rangle_{\mathscr{A}}=2 i m\left\langle\left[\bar{\psi} \gamma_{5} \psi\right]_{\mathrm{reg}}\right\rangle_{\mathscr{A}}-i \epsilon^{\alpha}\right\rangle J_{\mathrm{A}}^{\mu}(x)_{\mathrm{reg}}\right\rangle_{\mathscr{A}}\left(\partial_{\alpha} \mathscr{A}_{\mu}-a \partial_{\mu} \mathscr{A}_{\alpha}+\ldots\right)$ and

$$
\left\langle J_{\mathrm{A}}^{\mu}(x)\right\rangle_{\mathscr{A}}=-\operatorname{Tr}\left[\gamma^{\mu} \gamma_{5} G\left(x-\frac{\epsilon}{2}, x+\frac{\epsilon}{2}\right)_{\mathscr{A}}\right] \exp \left[i e a \int_{x-\epsilon / 2}^{x+\epsilon / 2} d y_{\alpha} \mathscr{A}^{\alpha}(y)\right]
$$

Furthermore, we use

$$
\epsilon^{\alpha} e^{i p \cdot \epsilon}=-i \frac{\partial}{\partial p_{\alpha}} e^{i p \cdot \epsilon} \quad \longrightarrow \quad \text { integration by parts }
$$

$$
\begin{aligned}
& -\operatorname{Tr}\left[\epsilon^{\alpha} \gamma^{\mu} \gamma_{5} G\left(x-\frac{\epsilon}{2}, x+\frac{\epsilon}{2}\right)_{\mathscr{A}}\right]= \\
& =e \int \frac{d^{4} q}{(2 \pi)^{4}} e^{-i q \cdot x} \mathscr{A}_{\nu}(q) \int \frac{d^{4} p}{(2 \pi)^{4}} e^{i p \cdot \epsilon} \frac{\partial}{\partial p_{\alpha}} \operatorname{Tr}\left(\gamma^{\mu} \gamma_{5} \frac{i}{\not p+\frac{1}{2} \phi-m} \gamma^{\nu} \frac{i}{\not p-\frac{1}{2} \phi-m}\right) \\
& \epsilon^{\mu} \longrightarrow 0
\end{aligned}
$$

$$
\lim _{\epsilon \rightarrow 0} \epsilon^{\alpha}\left\langle J_{\mathrm{A}}^{\mu}(x)_{\mathrm{reg}}\right\rangle_{\mathscr{A}}=-\lim _{\epsilon \rightarrow 0} \operatorname{Tr}\left[\epsilon^{\alpha} \gamma^{\mu} \gamma_{5} G\left(x-\frac{\epsilon}{2}, x+\frac{\epsilon}{2}\right)_{\mathscr{A}}\right]=
$$

$$
=\frac{i e}{16 \pi^{2}} \epsilon^{\mu \alpha \nu \sigma} \mathscr{F}_{\nu \sigma}(x)
$$

With this result we return to the regularized anomaly
$\partial_{\mu}\left\langle J_{\mathrm{A}}^{\mu}(x)_{\mathrm{reg}}\right\rangle_{\mathscr{A}}=2 i m\left\langle\left[\bar{\psi} \gamma_{5} \psi\right]_{\mathrm{reg}}\right\rangle_{\mathscr{A}}-i e \epsilon^{\alpha}\left\langle J_{\mathrm{A}}^{\mu}(x)_{\mathrm{reg}}\right\rangle_{\mathscr{A}}\left(\partial_{\alpha} \mathscr{A}_{\mu}-a \partial_{\mu} \mathscr{A}_{\alpha}+\ldots\right)$

$$
\begin{aligned}
& -\operatorname{Tr}\left[\epsilon^{\alpha} \gamma^{\mu} \gamma_{5} G\left(x-\frac{\epsilon}{2}, x+\frac{\epsilon}{2}\right)_{\mathscr{A}}\right]= \\
& =\left(e \int \frac{d^{4} q}{(2 \pi)^{4}} e^{-i q \cdot x} \mathscr{A}_{\nu}(q)\right) \int \frac{d^{4} p}{(2 \pi)^{4}} e^{i p \cdot \epsilon} \frac{\partial}{\partial p_{\alpha}} \operatorname{Tr}\left(\gamma^{\mu} \gamma_{5} \frac{i}{\not p+\frac{1}{2} \not q-m} \gamma^{\nu} \frac{i}{\not p-\frac{1}{2} q d-m}\right) \\
& \lim _{\epsilon \rightarrow 0} \epsilon^{\alpha}\left\langle J_{\mathrm{A}}^{\mu}(x)_{\operatorname{reg}\rangle_{\mathscr{A}}}=-\lim _{\epsilon \rightarrow 0} \operatorname{Tr}\left[\epsilon^{\alpha} \gamma^{\mu} \gamma_{5} G\left(x-\frac{\epsilon}{2}, x+\frac{\epsilon}{2}\right)_{\mathscr{A}}\right]=\right. \\
& =\frac{i e}{16 \pi^{2}} \epsilon^{\mu \alpha \nu \sigma \mathscr{F}_{\nu \sigma}(x)}
\end{aligned}
$$

With this result we return to the regularized anomaly

$\partial_{\mu}\left\langle J_{\mathrm{A}}^{\mu}(x)_{\mathrm{reg}}\right\rangle_{\mathscr{A}}=2 i m\left\langle\left[\bar{\psi} \gamma_{5} \psi\right]_{\mathrm{reg}}\right\rangle_{\mathscr{A}}-i e \epsilon^{\alpha}\left\langle J_{\mathrm{A}}^{\mu}(x)_{\mathrm{reg}}\right\rangle_{\mathscr{A}}\left(\partial_{\alpha} \mathscr{A}_{\mu}-a \partial_{\mu} \mathscr{A}_{\alpha}+\ldots\right)$

$$
\partial_{\mu}\left\langle J_{\mathrm{A}}^{\mu}(x)_{\mathrm{reg}}\right\rangle_{\mathscr{A}}=2 i m\left\langle\left[\bar{\psi} \gamma_{5} \psi\right]_{\mathrm{reg}}\right\rangle_{\mathscr{A}}-i e \epsilon^{\alpha}\left\langle J_{\mathrm{A}}^{\mu}(x)_{\mathrm{reg}}\right\rangle_{\mathscr{A}}\left(\partial_{\alpha} \mathscr{A}_{\mu}-a \partial_{\mu} \mathscr{A}_{\alpha}+\ldots\right)
$$

$$
\lim _{\epsilon \rightarrow 0} \epsilon^{\alpha}\left\langle J_{\mathrm{A}}^{\mu}(x)_{\mathrm{reg}}\right\rangle_{\mathscr{A}}=\frac{i e}{16 \pi^{2}} \epsilon^{\mu \alpha \nu \sigma} \mathscr{F}_{\nu \sigma}(x)
$$

Using the simple identity

$$
\epsilon^{\mu \alpha \nu \sigma}\left(\partial_{\alpha} \mathscr{A}_{\mu}-a \partial_{\mu} \mathscr{A}_{\alpha}\right)=(1+a) \epsilon^{\mu \alpha \nu \sigma} \partial_{\alpha} \mathscr{A}_{\mu}=\frac{1+a}{2} \epsilon^{\mu \alpha \nu \sigma} \mathscr{F}_{\alpha \mu}
$$

we arrive at the result

$$
\lim _{\epsilon \rightarrow 0} \partial_{\mu}\left\langle J_{\mathrm{A}}^{\mu}(x)_{\mathrm{reg}}\right\rangle_{\mathscr{A}}=2 i m \lim _{\epsilon \rightarrow 0}\left\langle\left[\bar{\psi} \gamma_{5} \psi\right]_{\mathrm{reg}}\right\rangle_{\mathscr{A}}+\frac{e^{2}}{32 \pi^{2}}(1+a) \epsilon^{\mu \nu \alpha \beta} \mathscr{F}_{\mu \nu} \mathscr{F}_{\alpha \beta}
$$

$$
\lim _{\epsilon \rightarrow 0} \partial_{\mu}\left\langle J_{\mathrm{A}}^{\mu}(x)_{\mathrm{reg}}\right\rangle_{\mathscr{A}}=2 i \lim _{\epsilon \rightarrow 0}\left\langle\left[\bar{\psi} \gamma_{5} \psi\right]_{\mathrm{reg}}\right\rangle_{\mathscr{A}}+\frac{e^{2}}{32 \pi^{2}}(1+a) \epsilon^{\mu \nu \alpha \beta} \mathscr{F}_{\mu \nu} \mathscr{F}_{\alpha \beta}
$$

We can repeat the same calculation for the vector current

$$
J_{V}^{\mu}(x)_{\mathrm{reg}}=\bar{\psi}\left(x+\frac{\epsilon}{2}\right) \gamma^{\mu} \psi\left(x-\frac{\epsilon}{2}\right) \exp \left[i e a \int_{x-\epsilon / 2}^{x+\epsilon / 2} d y_{\alpha} \mathscr{A}^{\alpha}(y)\right]
$$

whose divergence is given by

$$
\lim _{\epsilon \rightarrow 0} \partial_{\mu}\left\langle J_{V}^{\mu}(x)_{\mathrm{reg}}\right\rangle_{\mathscr{A}}=\frac{e^{2}}{64 \pi^{2}}(1-a) \epsilon^{\mu \nu \alpha \beta} \mathscr{F}_{\mu \nu} \mathscr{F}_{\alpha \beta}
$$

Thus, we have arrived at the result:

$$
\text { For } a=1
$$

We recover the $A B J$ anomaly and the vector current is conserved

$$
\text { For } a=-1
$$

The axial-vector current is conserved but gauge invariance is broken.

Quantum corrections

What about higher loops?

The $A B J$ anomaly is a one-loop result. Is it corrected by higher loop diagrams? E.g.

These diagrams contain five fermion propagator. The integration over the fermion loop momentum

$$
\ldots \int \frac{d^{4} \ell}{(2 \pi)^{4}} \prod_{i=1}^{5} \frac{i}{\ell+\sharp_{i}+i \varepsilon} \cdots
$$

is convergent. The remaining loops can be handled using a gauge invariant regulator, for example

$$
\Delta S=\frac{1}{\Lambda^{2}} \int d^{4} x F_{\mu v} \square F^{\mu v} \quad G_{\mu v}(p) \sim \frac{\Lambda^{2}}{p^{4}}
$$

This heuristic argument can be made more precise.

Consider a generic topology contributing to the divergence of the axial-vector current:

$$
\begin{aligned}
k^{\mu} i \Gamma_{\mu \alpha \beta}(p, q)_{L-\mathrm{loop}}= & \int \prod_{a=1}^{L-1} \frac{d^{4} \ell_{a}}{(2 \pi)^{4}} \Gamma_{\alpha \beta}^{\left(G^{\prime}\right)}\left(r_{1}, \ldots, r_{2 n} ; p, q\right) \\
\times & \int \frac{d^{4} \ell}{(2 \pi)^{4}} \sum_{b=1}^{2 n} \operatorname{Tr}\left\{\left[\prod_{j=1}^{b-1}\left(-i e \gamma^{\alpha_{j}}\right) \frac{i}{\nmid+\not \eta_{j}-m}\right]\right. \\
& \times\left(-i e \gamma^{\alpha_{b}}\right) \frac{i}{\ell+\not \eta_{b}-m} i k_{\mu} \gamma^{\mu} \gamma_{5} \frac{i}{\nmid+\not \eta_{b}-k-m} \\
& \left.\times\left[\prod_{j=b+1}^{2 n}\left(-i e \gamma^{\alpha_{j}}\right) \frac{i}{\not \ell+\not \eta_{j}^{\prime}-\not ้-m}\right]\right\}
\end{aligned}
$$

$$
\begin{gathered}
k^{\mu} i \Gamma_{\mu \alpha \beta}(p, q)_{L \text {-loop }}=\int \prod_{a=1}^{L-1} \frac{d^{4} \ell_{a}}{(2 \pi)^{4}} \Gamma_{\alpha \beta}^{\left(G^{\prime}\right)}\left(r_{1}, \ldots, r_{2 n} ; p, q\right) \int \frac{d^{4} \ell}{(2 \pi)^{4}} \sum_{b=1}^{2 n} \operatorname{Tr}\left\{\left[\prod_{j=1}^{b-1}\left(-i e \gamma^{\alpha_{j}}\right) \frac{i}{\not \ell+\not \eta_{j}-m}\right]\right. \\
\left.\times\left(-i e \gamma^{\alpha_{b}}\right) \frac{i}{\nmid+\not \eta_{b}-m} i k_{\mu} \gamma^{\mu} \gamma_{5} \frac{i}{\nmid+\not b_{b}-k-m}\left[\prod_{j=b+1}^{2 n}\left(-i e \gamma^{\alpha_{j}}\right) \frac{i}{\not \ell+\not \eta_{j}-\not \ell-m}\right]\right\}
\end{gathered}
$$

We simplify this expression using,

$$
\not b \gamma_{5}=\left(\nmid+\not \eta_{b}-m\right) \gamma_{5}+\gamma_{5}\left(\ell+\not \eta_{b}-\not \vDash-m\right)+2 m \gamma_{5}
$$

to write

$$
\begin{aligned}
\frac{i}{\nmid+\eta_{b}-m} i k_{\mu} \gamma^{\mu} \gamma_{5} \frac{i}{\not q+\eta_{b}-k-m} & =\frac{i}{\not q+\eta_{b}-m}\left(2 i m \gamma_{5}\right) \frac{i}{\not q+\not \eta_{b}-k-m} \\
& -\frac{i}{\nmid+\eta_{b}-m} \gamma_{5}-\gamma_{5} \frac{i}{\nmid+\not b_{b}-\not k-m}
\end{aligned}
$$

$$
k^{\mu} i \Gamma_{\mu \alpha \beta}(p, q)_{L \text {-loop }}=\int \prod_{a=1}^{L-1} \frac{d^{4} \ell_{a}}{(2 \pi)^{4}} \Gamma_{\alpha \beta}^{\left(G^{\prime}\right)}\left(r_{1}, \ldots, r_{2 n} ; p, q\right) \int \frac{d^{4} \ell}{(2 \pi)^{4}} \sum_{b=1}^{2 n} \operatorname{Tr}\left\{\left[\prod_{j=1}^{b-1}\left(-i e \gamma^{\alpha_{j}}\right) \frac{i}{\not \ell+\not \eta_{j}^{\prime}-m}\right]\right.
$$

$$
\left.\times\left(-i e \gamma^{\alpha_{b}}\right) \frac{i}{\not q+\not q_{b}-m} i^{i k_{\mu} \gamma^{\mu} \gamma_{5}} \frac{i}{\nmid+\eta_{b}-k-m}\left[\prod_{j=b+1}^{2 n}\left(-i e \gamma^{\alpha_{j}}\right) \frac{i}{\nmid+\not \eta_{j}-\not k-m}\right]\right\}
$$

We simplify this expression using,

$$
\not k \gamma_{5}=\left(\nmid+\not t_{b}-m\right) \gamma_{5}+\gamma_{5}\left(\not \ell+\eta_{b}-\not / k-m\right)+2 m \gamma_{5}
$$

to write

$$
\begin{aligned}
\frac{i}{\nmid+\eta_{b}-m} i k_{\mu} \gamma^{\mu} \gamma_{5} \frac{i}{\not q+\eta_{b}-k-m} & =\frac{i}{\not t+\eta_{b}-m} \\
& \left.-\frac{i}{\nmid+\eta_{b}-m} \gamma_{5}-\gamma_{5} \frac{i}{\nmid+\eta_{b}-\not k-m} \gamma_{5}\right) \frac{i}{\ell+\eta_{b}-k-m}
\end{aligned}
$$

Thus, the result has the structure:

$$
k^{\mu} i \Gamma_{\mu \alpha \beta}(p, q)_{L-\text { loop }}=2 m i \Gamma_{\alpha \beta}(p, q)_{L \text {-loop }}+\Delta_{\alpha \beta}(p, q) .
$$

The relevant term contributing to $\Delta_{\alpha \beta}(p, q)$ is

$$
\begin{aligned}
& -\sum_{b=1}^{2 n} \operatorname{tr}\left\{\left[\prod_{j=1}^{b}\left(-i e \gamma^{\alpha_{j}}\right) \frac{i}{\nmid+\eta_{j}^{\prime}-m}\right] i \gamma_{5}\left[\prod_{j=b+1}^{2 n}\left(-i e \gamma^{\alpha_{j}}\right) \frac{i}{\nmid+\eta_{j}^{\prime}-\nmid k-m}\right]\right. \\
& \left.-\left[\prod_{j=1}^{b-1}\left(-i e \gamma^{\alpha_{j}}\right) \frac{i}{\ell+\ell_{j}-m}\right] i \gamma_{5}\left[\prod_{j=b}^{2 n}\left(-i e \gamma^{\alpha_{j}}\right) \frac{i}{\nmid+\eta_{j}^{\prime}-\nvdash-m}\right]\right\} .
\end{aligned}
$$

and most terms cancel

$$
\begin{aligned}
& +\left[\prod_{j=1}^{2}\left(-i e \gamma^{\alpha_{j}}\right) \frac{i}{\nmid+\ell_{j}^{\prime}-m}\right] i \gamma_{5}\left[\prod_{j=3}^{2 n}\left(-i e \gamma^{\alpha_{j}}\right) \frac{i}{\nmid+\ell_{j}-\not k-m}\right] \\
& \left.-\left(-i e \gamma^{\alpha_{1}}\right) \frac{i}{\not \ell+\not{y}_{1}-m} i \gamma_{5}\left[\prod_{j=2}^{2 n}\left(-i e \gamma^{\alpha_{j}}\right) \frac{i}{\not \ell+\ell_{j}-\not \ell-m}\right]+\ldots\right\}
\end{aligned}
$$

Thus, the result has the structure:

$$
k^{\mu} i \Gamma_{\mu \alpha \beta}(p, q)_{L-\text { loop }}=2 m i \Gamma_{\alpha \beta}(p, q)_{L \text {-loop }}+\Delta_{\alpha \beta}(p, q) .
$$

The relevant term contributing to $\Delta_{\alpha \beta}(p, q)$ is

$$
\begin{aligned}
-\sum_{b=1}^{2 n} \operatorname{tr} & \left\{\left[\prod_{j=1}^{b}\left(-i e \gamma^{\alpha_{j}}\right) \frac{i}{\nmid+\eta_{j}^{\prime}-m}\right] i \gamma_{5}\left[\prod_{j=b+1}^{2 n}\left(-i e \gamma^{\alpha_{j}}\right) \frac{i}{\nmid+\eta_{j}^{\prime}-\not ้-m}\right]\right. \\
& \left.-\left[\prod_{j=1}^{b-1}\left(-i e \gamma^{\alpha_{j}}\right) \frac{i}{\nmid+\eta_{j}^{\prime}-m}\right] i \gamma_{5}\left[\prod_{j=b}^{2 n}\left(-i e \gamma^{\alpha_{j}}\right) \frac{i}{\nmid+\eta_{j}^{\prime}-\not / k-m}\right]\right\} .
\end{aligned}
$$

and most terms cancel

$$
+\left[\prod_{j=1}^{2}\left(-i e \gamma^{\alpha_{j}}\right) \frac{i}{\not \ell+\not \psi_{j}-m}\right] i \gamma_{5}\left[\prod_{j=3}^{2 n}\left(-i e \gamma^{\alpha_{j}}\right) \frac{i}{\not \ell+\not \psi_{j}-\not k-m}\right]
$$

$$
\left.-\left(-i e \gamma^{\alpha_{1}}\right) \frac{i}{\nmid+\not \ell_{1}-m} i \gamma_{5}\left[\prod_{j=2}^{2 n}\left(-i e \gamma^{\alpha_{j}}\right) \frac{i}{\nmid+\not \phi_{j}-\not \ell-m}\right]+\ldots\right\}
$$

The only surviving terms are

$$
-\operatorname{tr}\left\{\left[\prod_{j=1}^{2 n}\left(-i e \gamma^{\alpha_{j}}\right) \frac{i}{\not \ell+\eta_{j}-m}\right] i \gamma_{5}-i \gamma_{5}\left[\prod_{j=1}^{2 n}\left(-i e \gamma^{\alpha_{j}}\right) \frac{i}{\not \ell-\ell_{j}-\not k-m}\right]\right\}
$$

Hence, the final result for the anomalous piece is:

$$
\begin{aligned}
\Delta_{\alpha \beta}(p, q) & =-\int \prod_{a=1}^{L-1} \frac{d^{4} \ell_{a}}{(2 \pi)^{4}} \Gamma_{\alpha \beta}^{\left(G^{\prime}\right)}\left(r_{1}, \ldots, r_{2 n} ; p, q\right) \\
& \times \int \frac{d^{4} \ell}{(2 \pi)^{4}} \sum_{b=1}^{2 n} \operatorname{Tr}\left\{i \gamma_{5}\left[\prod_{j=1}^{2 n}\left(-i e \gamma^{\alpha_{j}}\right) \frac{i}{\ell+\eta_{j}^{\prime}-m}-\prod_{j=1}^{2 n}\left(-i e \gamma^{\alpha_{j}}\right) \frac{i}{\ell+\eta_{j}-\nvdash-m}\right]\right\}
\end{aligned}
$$

For $n>1$ we can shift the integration momentum and cancel the terms.

Steven Adler (b. 1939)

The $A B J$ anomaly does not receive quantum corrections

> (Adler-Bardeen theorem)

William A. Bardeen
(b. I94I)

UV or IR?

On general grounds, the anomaly is understood as a fundamental incompatibility between the classical symmetry and the regularization procedure.

The symmetry is anomalous because the breaking introduced by the regularization cannot be subtracted by a local counterterm added to the action.

From this point of view the anomaly can be regarded as a UV effect.

But there is also an IR side...

Let us look at the on-shell amplitude

$$
\langle 0| J_{\mathrm{A}}^{\mu}(0)|p, q\rangle_{\mathscr{A}}=\left.\Gamma^{\mu \alpha \beta}(p, q) \widetilde{\mathscr{A}_{\alpha}}(p) \widetilde{\mathscr{A}_{\beta}}(q)\right|_{p^{2}=q^{2}=0}
$$

where $p^{\mu} \widetilde{\mathscr{A}_{\mu}}(p)=0$. We recall,

$$
\begin{aligned}
i \Gamma_{\mu \alpha \beta}(p, q) & =f_{1} \epsilon_{\mu \alpha \beta \sigma} p^{\sigma}+f_{2} \epsilon_{\mu \alpha \beta \sigma} q^{\sigma}+f_{3} \epsilon_{\mu \alpha \sigma \lambda} p_{\beta} p^{\sigma} q^{\lambda} \\
& +f_{4} \epsilon_{\mu \alpha \sigma \lambda} q_{\beta} p^{\sigma} q^{\lambda}+f_{5} \epsilon_{\mu \beta \sigma \lambda} p_{\alpha} p^{\sigma} q^{\lambda}+f_{6} \epsilon_{\mu \beta \sigma \lambda} q_{\alpha} p^{\sigma} q^{\lambda}
\end{aligned}
$$

and due to the on-shell condition

$$
f_{i}(p, q)=f_{i}(p \cdot q) \quad(\text { symmetric in } p \text { and } q)
$$

and from Bose symmetry $f_{1}=-f_{2}, f_{3}=-f_{6}$, and $f_{4}=-f_{5}$.
Vector current conservation further implies:

$$
\begin{aligned}
& f_{2}-p^{2} f_{5}-p \cdot q f_{6}=0 \\
& f_{1}-q^{2} f_{4}-p \cdot q f_{3}=0
\end{aligned}
$$

$$
f_{1}(p, q)=p \cdot q f_{3}(p, q)
$$

The amplitude is then given only in terms of $f_{3}(p, q)$ and $f_{4}(p, q)$

$$
\begin{aligned}
\left.i \Gamma_{\mu \alpha \beta}(p, q)\right|_{p^{2}=q^{2}=0} & =f_{3}(p, q)\left[p \cdot q \epsilon_{\mu \alpha \beta \sigma}\left(p^{\sigma}-q^{\sigma}\right)+\epsilon_{\mu \alpha \sigma \lambda} p_{\beta} p^{\sigma} q^{\lambda}-\epsilon_{\mu \beta \sigma \lambda} q_{\alpha} p^{\sigma} q^{\lambda}\right] \\
& +f_{4}(p, q)\left(\epsilon_{\mu \alpha \sigma \lambda} q_{\beta}-\epsilon_{\mu \beta \sigma \lambda} p_{\alpha}\right) p^{\sigma} q^{\lambda}
\end{aligned}
$$

Due to $p^{\mu} \widetilde{\mathscr{A}}_{\mu}(p)=0$, the term with $f_{4}(p, q)$ does not contribute to the amplitude.

Using as well

$$
\begin{aligned}
-p \cdot q \epsilon_{\mu \alpha \beta \sigma} p^{\sigma} & =\epsilon_{\alpha \beta \sigma \lambda} p_{\mu} p^{\sigma} q^{\lambda}+\epsilon_{\mu \beta \sigma \lambda} p_{\alpha} p^{\sigma} q^{\lambda}+\epsilon_{\mu \alpha \sigma \lambda} p_{\beta} p^{\sigma} q^{\lambda} \\
p \cdot q \epsilon_{\mu \alpha \beta \sigma} q^{\sigma} & =\epsilon_{\alpha \beta \sigma \lambda} q_{\mu} p^{\sigma} q^{\lambda}+\epsilon_{\mu \beta \sigma \lambda} q_{\alpha} p^{\sigma} q^{\lambda}+\epsilon_{\mu \alpha \sigma \lambda} q_{\beta} p^{\sigma} q^{\lambda}
\end{aligned}
$$

the amplitude takes the form:

$$
\langle 0| J_{\mathrm{A}}^{\mu}(0)|p, q\rangle_{\mathscr{A}}=i(p+q)^{\mu} f_{3}(p, q) \epsilon_{\alpha \beta \sigma \lambda} p^{\sigma} q^{\lambda} \widetilde{\mathscr{A}}^{\alpha}(p) \widetilde{\mathscr{A}}^{\beta}(q)
$$

The amplitude is then given only in terms of $f_{3}(p, q)$ and $f_{4}(p, q)$

$$
\begin{aligned}
\left.i \Gamma_{\mu \alpha \beta}(p, q)\right|_{p^{2}=q^{2}=0} & =f_{3}(p, q)\left[p \cdot q \epsilon_{\mu \alpha \beta \sigma}\left(p^{\sigma}-q^{\sigma}\right)+\epsilon_{\mu \alpha \sigma \lambda} p_{\beta} p^{\sigma} q^{\lambda}-\epsilon_{\mu \beta \sigma \lambda} q_{\alpha} p^{\sigma} q^{\lambda}\right] \\
& +f_{4}(p, q)\left(\epsilon_{\mu \alpha \sigma \lambda} q_{\beta}-\epsilon_{\mu \beta \sigma \lambda} p_{\alpha}\right) p^{\sigma} q^{\lambda}
\end{aligned}
$$

Due to $p^{\mu} \widetilde{\mathscr{A}}_{\mu}(p)=0$, the term with $f_{4}(p, q)$ does not contribute to the amplitude.
Using as well

$$
\epsilon_{\alpha \beta \sigma \lambda} w_{\mu}+\epsilon_{\beta \sigma \lambda \mu} w_{\alpha}+\epsilon_{\sigma \lambda \mu \alpha} w_{\beta}+\epsilon_{\lambda \mu \alpha \beta} w_{\sigma}+\epsilon_{\mu \alpha \beta \sigma} w_{\lambda}=0
$$

$$
\begin{aligned}
-p \cdot q \epsilon_{\mu \alpha \beta \sigma} p^{\sigma} & =\epsilon_{\alpha \beta \sigma \lambda} p_{\mu} p^{\sigma} q^{\lambda}+\epsilon_{\mu \beta \sigma \lambda} p_{\alpha} p^{\sigma} q^{\lambda}+\epsilon_{\mu \alpha \sigma \lambda} p_{\beta} p^{\sigma} q^{\lambda} \\
p \cdot q \epsilon_{\mu \alpha \beta \sigma} q^{\sigma} & =\epsilon_{\alpha \beta \sigma \lambda} q_{\mu} p^{\sigma} q^{\lambda}+\epsilon_{\mu \beta \sigma \lambda} q_{\alpha} p^{\sigma} q^{\lambda}+\epsilon_{\mu \alpha \sigma \lambda} q_{\beta} p^{\sigma} q^{\lambda}
\end{aligned}
$$

the amplitude takes the form:

$$
\langle 0| J_{\mathrm{A}}^{\mu}(0)|p, q\rangle_{\mathscr{A}}=i(p+q)^{\mu} f_{3}(p, q) \epsilon_{\alpha \beta \sigma \lambda} p^{\sigma} q^{\lambda} \widetilde{\mathscr{A}^{\alpha}}(p) \widetilde{\mathscr{A}^{\beta}}(q)
$$

$$
\langle 0| J_{\mathrm{A}}^{\mu}(0)|p, q\rangle_{\mathscr{A}}=i(p+q)^{\mu} f_{3}(p, q) \epsilon_{\alpha \beta \sigma \lambda} p^{\sigma} q^{\lambda} \widetilde{\mathscr{A}^{\alpha}}(p) \widetilde{\mathscr{A}^{\beta}}(q)
$$

The function $f_{3}(p, q)$ can be computed from Feynman diagrams

$$
f_{3}(p, q)=\frac{i e^{2}}{\pi^{2}} \int_{0}^{1} d x \int_{0}^{1-x} d y \frac{x y}{2 x y p \cdot q-m^{2}}
$$

If we take a naive massless limit,

$$
\lim _{m \rightarrow 0} f_{3}(p, q)=\frac{i e^{2}}{2 \pi^{2}} \frac{1}{(p+q)^{2}}
$$

and we find

$$
\lim _{m \rightarrow 0}\langle 0| J_{A}^{\mu}(0)|p, q\rangle_{\mathscr{A}}=-\frac{e^{2}}{2 \pi^{2}} \frac{(p+q)^{\mu}}{(p+q)^{2}} \epsilon_{\alpha \beta \sigma \lambda} p^{\sigma} q^{\lambda} \widetilde{\mathscr{A}^{\alpha}}(p) \widetilde{\mathscr{A}^{\beta}}(q)
$$

At the level of the current, the anomaly is signalled by a massless pole!

Thus, the anomaly has two faces:

- When looking at the divergence of the current, it comes associated with ambiguities in the UV behavior of the integrals. Fixing them forces us to give up the axial-vector symmetry in favor of gauge invariance.
- When looking at the current itself, it is signaled by the appearance of a massless pole (i.e., an IR effect)

In fact, being careful, we should have written the result for the amplitude as

$$
\lim _{m \rightarrow 0}\langle 0| J_{A}^{\mu}(0)|p, q\rangle_{\mathscr{A}}=-\frac{e^{2}}{2 \pi^{2}} \frac{(p+q)^{\mu}}{(p+q)^{2}+i \epsilon} \epsilon_{\alpha \beta \sigma \lambda} p^{\sigma} q^{\lambda} \widetilde{\mathscr{A}^{\alpha}}(p) \widetilde{\mathscr{A}^{\beta}}(q) .
$$

The reason is that the integration over y in

$$
f_{3}(p, q)=\frac{i e^{2}}{\pi^{2}} \int_{0}^{1} d x \int_{0}^{1-x} d y \frac{x y}{2 x y p \cdot q-m^{2}}
$$

produces a logarithm and an imaginary part

$$
\operatorname{Im} f_{3}(p, q) \neq 0 \quad \text { for } \quad(p+q)^{2}>4 m^{2}
$$

when $m \rightarrow 0$ the real part develops a pole and the imaginary part a deltafunction singularity whose coefficient is the anomaly

$$
\lim _{m \rightarrow 0} \operatorname{Im} \Gamma^{\mu \alpha \beta}(p, q)=\frac{e^{2}}{2 \pi} \epsilon^{\alpha \beta \sigma \lambda} p_{\sigma} q_{\lambda}(p+q)^{\mu} \delta\left((p+q)^{2}\right)
$$

In fact, being careful, we should have written the result for the amplitude as

$$
\lim _{m \rightarrow 0}\langle 0| J_{A}^{\mu}(0)|p, q\rangle_{\mathscr{A}}=-\frac{e^{2}}{2 \pi^{2}} \frac{(p+q)^{\mu}}{(p+q)^{2}+i \epsilon} \epsilon_{\alpha \beta \sigma \lambda} p^{\sigma} q^{\lambda} \widetilde{\mathscr{A}^{\alpha}}(p) \widetilde{\mathscr{A}^{\beta}}(q) .
$$

The reason is that the integration over y in

$$
f_{3}(p, q)=\frac{i e^{2}}{\pi^{2}} \int_{0}^{1} d x \int_{0}^{1-x} d y \frac{x y}{\operatorname{ram}^{2} \cdot n-m^{2}}
$$

produces a logarithm and an imaginary part

$$
\operatorname{Im} f_{3}(p, q) \neq 0 \quad \text { for } \quad\left(p+\quad \frac{1}{x+i \epsilon}=\operatorname{PV} \frac{1}{x}-i \pi \delta(x)\right.
$$

when $m \rightarrow 0$ the real part develops a pole and the imaginary part a deltafunction singularity whose coefficient is the anomaly

$$
\lim _{m \rightarrow 0} \operatorname{Im} \Gamma^{\mu \alpha \beta}(p, q)=\frac{e^{2}}{2 \pi} \epsilon^{\alpha \beta \sigma \lambda} p_{\sigma} q_{\lambda}(p+q)^{\mu} \delta\left((p+q)^{2}\right)
$$

This discontinuity in the imaginary part of the amplitude can be understood physically.

Let us use the Cutkosky rules:

where, e.g.

fermion-antifermion annihilation (2 diagrams)

This discontinuity in the imaginary part of the amplitude can be understood physically.

Let us use the Cutkosky rules:

$$
\operatorname{Im} \Gamma^{\mu \alpha \beta}(p, q) \sim
$$

where, e.g.

$$
\begin{aligned}
\operatorname{Im} \Gamma^{\mu \alpha \beta}(p, q) \epsilon_{\alpha}\left(\mathbf{p}, \lambda_{1}\right) \epsilon_{\beta}\left(\mathbf{q}, \lambda_{2}\right) \sim & \sum_{\sigma_{1}, \sigma_{2}} \int d^{3} k_{1} \int d^{3} k_{2} \text { out }\left\langle\mathbf{p}, \lambda_{1} ; \mathbf{q}, \lambda_{2} \mid \mathbf{k}_{1}, \sigma_{1} ; \mathbf{k}_{2}, \sigma_{2}\right\rangle_{\text {in }} \\
& \times_{\text {out }}\left\langle\mathbf{k}_{1}, \sigma_{1} ; \mathbf{k}_{2}, \sigma_{2}\right| J_{A}^{\mu}(0)|0\rangle_{\text {in }}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Im} \Gamma^{\mu \alpha \beta}(p, q) \epsilon_{\alpha}\left(\mathbf{p}, \lambda_{1}\right) \epsilon_{\beta}\left(\mathbf{q}, \lambda_{2}\right) \sim & \sum_{\sigma_{1}, \sigma_{2}} \int d^{3} k_{1} \int d^{3} k_{2 \text { out }}\left\langle\mathbf{p}, \lambda_{1} ; \mathbf{q}, \lambda_{2} \mid \mathbf{k}_{1}, \sigma_{1} ; \mathbf{k}_{2}, \sigma_{2}\right\rangle_{\text {in }} \\
& \times_{\text {out }}\left\langle\mathbf{k}_{1}, \sigma_{1} ; \mathbf{k}_{2}, \sigma_{2}\right| J_{A}^{\mu}(0)|0\rangle_{\text {in }}
\end{aligned}
$$

The first important thing is to invoke the Landau-Yang theorem: no state of spin-one can decay into two on-shell photons.

Thus, the fermion-antifermion system should have zero spin. This means that in the center of mass frame they have the same helicities

$$
\sigma_{1}=\sigma_{2} \equiv \sigma
$$

We begin with the pair creation by the axial-vector current:

$$
{ }_{\mathrm{out}}\left\langle\mathbf{k}_{1}, \sigma ; \mathbf{k}_{2}, \sigma\right| J_{A}^{\mu}(0)|0\rangle_{\mathrm{in}} \sim \bar{v}\left(\mathbf{k}_{1}, \sigma\right) \gamma^{\mu} \gamma_{5} u\left(\mathbf{k}_{2}, \sigma\right)
$$

In the massless limit, the helicity turns into \pm chirality

$$
\lim _{m \rightarrow 0} u\left(\mathbf{p}, \pm \frac{1}{2}\right)=u_{ \pm}(\mathbf{p}) \quad \quad \lim _{m \rightarrow 0} v\left(\mathbf{p}, \pm \frac{1}{2}\right)=v_{\mp}(\mathbf{p})
$$

Thus, using

$$
\bar{v}_{\mp}\left(\mathbf{k}_{2}\right) \gamma^{\mu} \gamma_{5} u_{ \pm}\left(\mathbf{k}_{1}\right)=0
$$

we find

$$
\lim _{m \rightarrow 0} \text { out }\left\langle\mathbf{k}_{1}, \sigma ; \mathbf{k}_{2}, \sigma\right| J_{A}^{\mu}(0)|0\rangle_{\text {in }}=0
$$

We turn now to the annihilation of the two fermions

$$
\begin{aligned}
& { }_{\text {out }}\left\langle\mathbf{p}, \lambda_{1} ; \mathbf{q}, \lambda_{2} \mid \mathbf{k}_{1}, \sigma ; \mathbf{k}_{2}, \sigma\right\rangle_{\text {in }}=-e^{2} \epsilon_{\mu}\left(\mathbf{p}, \lambda_{1}\right) \epsilon_{\nu}\left(\mathbf{k}, \lambda_{2}\right) \\
& \\
& \quad \times \bar{v}\left(\mathbf{k}_{2}, \sigma\right)\left[\frac{\gamma^{\mu}\left(\not k_{1}-\not p+m\right) \gamma^{\nu}}{\left(k_{1}-p\right)^{2}-m^{2}}+\frac{\gamma^{\nu}\left(\not k_{2}-\not q+m\right) \gamma^{\mu}}{\left(k_{2}-q\right)^{2}-m^{2}}\right] u\left(\mathbf{k}_{1}, \sigma\right)
\end{aligned}
$$

Using now that

$$
\bar{v}_{\mp}\left(\mathbf{k}_{2}\right) \gamma^{\mu} \gamma^{\alpha} \gamma^{\nu} u_{ \pm}(\mathbf{k})=0
$$

we conclude that the second amplitude also vanish in the massless limit

$$
\lim _{m \rightarrow 0} \text { out }\left\langle\mathbf{p}, \lambda_{1} ; \mathbf{q}, \lambda_{2} \mid \mathbf{k}_{1}, \sigma ; \mathbf{k}_{2}, \sigma\right\rangle_{\text {in }}=0
$$

Thus, we would find that the amplitude approaches zero with the mass

$$
\operatorname{Im} \Gamma^{\mu \alpha \beta}(p, q) \sim 0
$$

$$
\begin{aligned}
& { }_{\text {out }}\left\langle\mathbf{p}, \lambda_{1} ; \mathbf{q}, \lambda_{2} \mid \mathbf{k}_{1}, \sigma ; \mathbf{k}_{2}, \sigma\right\rangle_{\text {in }}=-e^{2} \epsilon_{\mu}\left(\mathbf{p}, \lambda_{1}\right) \epsilon_{\nu}\left(\mathbf{k}, \lambda_{2}\right) \\
& \\
& \times \bar{v}\left(\mathbf{k}_{2}, \sigma\right)\left[\frac{\gamma^{\mu}\left(\not k_{1}-\not p+m\right) \gamma^{\nu}}{\left(k_{1}-p\right)^{2}-m^{2}}+\frac{\gamma^{\nu}\left(\not k_{2}-\not q+m\right) \gamma^{\mu}}{\left(k_{2}-q\right)^{2}-m^{2}}\right] u\left(\mathbf{k}_{1}, \sigma\right)
\end{aligned}
$$

But not so fast...

In the massless limit, on-shell fermions can emit collinear on-shell photons, and the intermediate state can fall on-shell.

The denominator then vanishes and we have an indeterminate limit.

That is why, being more careful we obtained:

$$
\operatorname{Im} \Gamma^{\mu \alpha \beta}(p, q) \sim(\text { anomaly }) \times \delta\left((p+q)^{2}\right)
$$

Thus, the anomaly appears as an IR discontinuity of the imaginary part of the amplitude.

Interestingly, this imaginary part in unambiguous.

A two-dimensional excursion: the Schwinger model

To keep things simple, we consider a massless Dirac fermion in $\mathrm{I}+\mathrm{I}$ dimensions, and compactify the spatial direction to a circle of length L.

We consider the following representation of the Dirac matrices

$$
\gamma^{0} \equiv \sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \gamma^{1} \equiv i \sigma_{2}=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

with the chirality matrix given by

$$
\gamma_{5} \equiv-\gamma^{0} \gamma^{1}=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Decomposing the Dirac fermion into its Weyl components $\psi=\binom{u_{+}}{u_{-}}$the Dirac equation reads

$$
\left(\partial_{0}-\partial_{1}\right) u_{+}=0, \quad\left(\partial_{0}+\partial_{1}\right) u_{-}=0
$$

chirality is linked to the direction of motion
the wave function for free fermions are

$$
v_{ \pm}^{(E)}\left(x^{0} \pm x^{1}\right)=\frac{1}{\sqrt{L}} e^{-i E\left(x^{0} \pm x^{1}\right)} \quad \text { with } \quad E=\mp p
$$

and since the spatial direction is compatified, the momentum is quantized:

$$
p=\frac{2 \pi n}{L}, \quad n \in \mathbb{Z}
$$

the spectrum is:

(negative chirality, right movers)

To quantize the Dirac fermion, we construct firts the ground state of the theory by filling all negative energy states (Dirac sea)

and expand:

$$
u_{ \pm}(x)=\sum_{E>0}\left[a_{ \pm}(E) v_{ \pm}^{(E)}(x)+b_{ \pm}^{\dagger}(E) v_{ \pm}^{(E)}(x)^{*}\right]
$$

where,

$$
\begin{aligned}
& a_{ \pm}(E): \text { annihilates a fermion with } E>0 \text { and } p=\mp E \\
& b_{ \pm}^{\dagger}(E): \text { creates an antifermion with } E>0 \text { and } p= \pm E \\
& \quad \text { (i.e., annihilates a fermion with } E<0 \text { and } p=\mp E)
\end{aligned}
$$

We look now at the classical symmetries of our theory

$$
\mathcal{L}=i u_{+}^{\dagger}\left(\partial_{0}+\partial_{1}\right) u_{+}+i u_{-}^{\dagger}\left(\partial_{0}-\partial_{1}\right) u_{-}
$$

Vector U(I):

$$
\psi \longrightarrow e^{i \alpha} \psi
$$

$$
u_{ \pm} \longrightarrow e^{i \alpha} u_{ \pm}
$$

whose associated Noether current is

$$
J_{\mathrm{V}}^{\mu}=\bar{\psi} \gamma^{\mu} \psi \quad J_{\mathrm{V}}^{\mu}=\binom{u_{+}^{\dagger} u_{+}+u_{-}^{\dagger} u_{-}}{-u_{+}^{\dagger} u_{+}+u_{-}^{\dagger} u_{-}}
$$

Axial $U(1)$:

$$
\psi \longrightarrow e^{i \beta \gamma_{5}} \psi \quad u_{ \pm} \longrightarrow e^{ \pm i \beta} u_{ \pm}
$$

with

$$
J_{\mathrm{A}}^{\mu}=\bar{\psi} \gamma^{\mu} \gamma_{5} \psi \quad J_{\mathrm{A}}^{\mu}=\binom{u_{+}^{\dagger} u_{+}-u_{-}^{\dagger} u_{-}}{-u_{+}^{\dagger} u_{+}-u_{-}^{\dagger} u_{-}}
$$

the corresponding conserved charges are

$$
\begin{aligned}
Q_{\mathrm{V}} & \equiv \int_{0}^{L} d x^{1} J_{\mathrm{V}}^{0}=\int_{0}^{L} d x^{1}\left(u_{+}^{\dagger} u_{+}+u_{-}^{\dagger} u_{-}\right) \\
Q_{\mathrm{A}} & \equiv \int_{0}^{L} d x^{1} J_{\mathrm{A}}^{0}=\int_{0}^{L} d x^{1}\left(u_{+}^{\dagger} u_{+}-u_{-}^{\dagger} u_{-}\right)
\end{aligned}
$$

Using the orthogonality relations of the wave functions

$$
\int_{0}^{L} d x^{1} v_{ \pm}^{(E)}(x)^{*} v_{ \pm}^{\left(E^{\prime}\right)}(x)=\delta_{E, E^{\prime}}
$$

$$
u_{ \pm}(x)=\sum_{E>0}\left[a_{ \pm}(E) v_{ \pm}^{(E)}(x)+b_{ \pm}^{\dagger}(E) v_{ \pm}^{(E)}(x)^{*}\right]
$$

we find

$$
\begin{aligned}
& Q_{\mathrm{V}}=\sum_{E>0}\left[a_{+}^{\dagger}(E) a_{+}(E)-b_{+}^{\dagger}(E) b_{+}(E)+a_{-}^{\dagger}(E) a_{-}(E)-b_{-}^{\dagger}(E) b_{-}(E)\right] \begin{array}{l}
\text { (fermions minus } \\
\text { antifermions) }
\end{array} \\
& Q_{\mathrm{A}}=\sum_{E>0}\left[a_{+}^{\dagger}(E) a_{+}(E)-b_{+}^{\dagger}(E) b_{+}(E)-a_{-}^{\dagger}(E) a_{-}(E)+b_{-}^{\dagger}(E) b_{-}(E)\right] \begin{array}{l}
\begin{array}{l}
\text { ("net" number of } \\
\text { ('ve minus -'ve } \\
\text { chirality states) }
\end{array}
\end{array}
\end{aligned}
$$

In the free theory, both charges are conserved... but what about switching an external electrical field?

We do it adiabatically. In the $\mathscr{A}^{0}=0$ gauge

The effect of this external field on the fermions is shifting the momentum by

$$
p \longrightarrow p-e \mathscr{A}^{1}
$$

Adiabaticity allows to treat the system at each instant as "time independent" (no transitions).

$$
p \longrightarrow p-e \mathscr{A}^{1}
$$

The shift have different effects on the states on each branch of the spectrum:

$$
\begin{array}{lll}
E=p & E=p-e \mathscr{A}^{1} & \text { (it "sinks") } \\
E=-p & E=-p+e \mathscr{A}^{1} & \text { (it "raises") }
\end{array}
$$

A number of negative chirality empty states become "holes" (negative chirality antifermions), while some occupied negative energy states with positive chirality get positive energy (positive chirality fermions)

But, how many pairs?

$$
N=\frac{\text { shift in the spectrum }}{\text { spectrum gap }}=\frac{e \mathscr{E} \tau_{0}}{2 \pi / L} \quad N=\frac{L}{2 \pi} e \mathscr{E} \tau_{0}
$$

This preserves the vector charge:

$$
Q_{\mathrm{V}}\left(\tau_{0}\right)=(N-0)+(0-N)=0
$$

A number of negative chirality empty states become "holes" (negative chirality antifermions), while some occupied negative energy states with positive chirality get positive energy (positive chirality fermions)

But, how many pairs?

$$
N=\frac{\text { shift in the spectrum }}{\text { spectrum gap }}=\frac{e \mathscr{E} \tau_{0}}{2 \pi / L} \quad N=\frac{L}{2 \pi} e \mathscr{E} \tau_{0}
$$

But changes the axial charge:

$$
Q_{\mathrm{A}}\left(\tau_{0}\right)=(N-0)-(0-N)=2 N
$$

$$
Q_{\mathrm{A}}\left(\tau_{0}\right)=(N-0)-(0-N)=2 N
$$

$$
N=\frac{L}{2 \pi} e \mathscr{E} \tau_{0}
$$

We have found that, in the presence of an external electric field, there is a violation in the conservation of the axial current.

Its rate of variation is

$$
\dot{Q}_{A}=\frac{Q_{A}\left(\tau_{0}\right)}{\tau_{0}}=\frac{e}{\pi} L \mathscr{E}
$$

This implies a violation in the conservation of the axial current

$$
\partial_{\mu} J_{\mathrm{A}}^{\mu}=\frac{e}{\pi} \mathscr{E}
$$

which gives the value of the axial anomaly in the Schwinger model:

$$
\partial_{\mu}\left\langle J_{\mathrm{A}}^{\mu}(x)\right\rangle_{\mathscr{A}}=\frac{e}{2 \pi} \epsilon^{\mu \nu} \mathscr{F}_{\mu \nu}(x)
$$

The anomaly in the massless Schwinger model has surprising consequences...

In fact, in two dimensions the vector and axial-vector currents are closely related.

$$
\gamma_{5}=-\gamma^{0} \gamma^{1} \quad \gamma^{\mu} \gamma_{5}=\epsilon^{\mu \nu} \gamma_{\nu}
$$

Hence,

$$
J_{\mathrm{A}}^{\mu}(x)=\epsilon^{\mu \nu} J_{\mathrm{V} \mu}(x)
$$

Thus the anomaly can be recast in terms of the vector current as

$$
\epsilon^{\mu \nu} \partial_{\mu}\left\langle J_{\mathrm{V} \nu}(x)\right\rangle_{\mathscr{A}}=\frac{e}{2 \pi} \epsilon^{\mu \nu} \mathscr{F}_{\mu \nu}(x)=\frac{e}{\pi} \epsilon^{\mu \nu} \partial_{\mu} \mathscr{A}_{\nu}(x)
$$

$$
\epsilon^{\mu \nu} \partial_{\mu}\left\langle J_{\mathrm{V} \nu}(x)\right\rangle_{\mathscr{A}}=\frac{e}{2 \pi} \epsilon^{\mu \nu} \mathscr{F}_{\mu \nu}(x)=\frac{e}{\pi} \epsilon^{\mu \nu} \partial_{\mu} \mathscr{A}_{\nu}(x)
$$

In addition, the vector current has to satisfy the Maxwell equations

$$
\partial_{\mu} \mathscr{F}^{\mu \nu}(x)=-e\left\langle J_{V}^{\nu}(x)\right\rangle_{\mathscr{A}} \quad \square \mathscr{A}^{\nu}(x)-\partial^{\nu} \partial_{\mu} \mathscr{A}^{\mu}(x)=-e\left\langle J_{V}^{\nu}(x)\right\rangle_{\mathscr{A}}
$$

Defining the pseudoscalar field $\mathscr{F}^{*} \equiv \frac{1}{2} \epsilon_{\mu \nu} \mathscr{F}^{\mu \nu}=\epsilon^{\mu \nu} \partial_{\mu} \mathscr{A}_{\nu}$ the two equations combine into:

$$
\left(\square+\frac{e^{2}}{\pi}\right) \mathscr{F}^{*}=0
$$

This means that the Schwinger model contains a propagating mode with mass

$$
m^{2}=\frac{e^{2}}{\pi}
$$

What is this mode? Let's remember than in two dimensions, a vector can be decomposed as

$$
A_{\mu}=\partial_{\mu} \eta+\epsilon_{\mu \nu} \partial^{\nu} \eta^{\prime}
$$

Due to the interaction with the fermions, the pseudoscalar mode acquires a mass.

The 2D Dirac fermion works like a "technifermion" which produces a massive photon.

Unfortunately, this only works in 2D!

What is this mode? Let's remember than in two dimensions, a vector can be decomposed as

Due to the interaction with the fermions, the pseudoscalar mode acquires a mass.

The 2D Dirac fermion works like a "technifermion" which produces a massive photon.

Unfortunately, this only works in 2D!

The Dirac-sea picture of the anomaly in the Schwinger model underlines its IR character

The anomaly it is determined by a number of states crossing the $E=0$ Fermi level

