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Shedding light on our calculation
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Why didn’t we have to commit to any particular regularization?

The amplitude                    should satisfy a number of condition:i�µ↵�(p, q)

• Parity: begin parity odd, it should contain an            tensor

• Poincaré invariance: it should be a rank-three tensor depending 
only on p and q

✏µ⌫↵�

This forces the following general structure for the amplitude

There are a number of properties of the function �µ↵�(p, q) that can be deduced from general
considerations. Due to the presence of the axial-vector current in the correlation function,
the amplitude is parity odd, so it should contain a Levi-Civita tensor. Given this, Poincaré
invariance leads to the following structure in terms of eight monomials
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where fi ⌘ fi(p, q) are functions of the momenta p and q. As a matter of fact, the functions
f

7

(p, q) and f
8

(p, q) can be reabsorbed in the remaining ones using the identity

✏↵���wµ + ✏���µw↵ + ✏��µ↵w� + ✏�µ↵�w� + ✏µ↵��w� = 0, (2.37)

valid for any four-dimensional vector w↵. Then we write the amplitude in terms of just six
scalar functions
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Next, we apply Bose symmetry of the two vector currents and impose the condition

i�µ↵�(p, q) = i�µ�↵(q, p), (2.39)

This means that the coe�cients in (2.37) satisfy the relations
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f
3
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6

(q, p), (2.40)

f
4
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5

(q, p).

In addition, the function �µ↵�(p, q) in (2.22) has dimension of energy. Dimensional analysis
shows that f

1

and f
2

are dimensionless, whereas f
3

-f
6

have dimensions of (energy)�2. These
latter functions, therefore, are expressed in terms of convergent integrals that are unambiguous.
As a consequence, all ambiguities of the linearly divergent integrals (2.23) have to be contained
in the coe�cients f

1

and f
2

.
To take care of this, we notice that
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�p�, (2.41)

(p+ q)µi�µ↵�(p, q) =
⇣

� f
1

+ f
2

⌘

✏↵���q
�p�.
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we can absorb f7 and f8 into the other f ’s.                                                                         

fi ⌘ fi(p, q)
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invariance leads to the following structure in terms of eight monomials

i�µ↵�(p, q) = f
1

✏µ↵��p
� + f

2

✏µ↵��q
� + f

3

✏µ↵��p�p
�q�

+ f
4

✏µ↵��q�p
�q� + f

5

✏µ���p↵p
�q� (2.36)

+ f
6

✏µ���q↵p
�q� + f

7

✏↵���pµp
�q� + f

8

✏↵���qµp
�q�,

where fi ⌘ fi(p, q) are functions of the momenta p and q. As a matter of fact, the functions
f

7

(p, q) and f
8

(p, q) can be reabsorbed in the remaining ones using the identity

✏↵���wµ + ✏���µw↵ + ✏��µ↵w� + ✏�µ↵�w� + ✏µ↵��w� = 0, (2.37)

valid for any four-dimensional vector w↵. Then we write the amplitude in terms of just six
scalar functions

i�µ↵�(p, q) = f
1

✏µ↵��p
� + f

2

✏µ↵��q
� + f

3

✏µ↵��p�p
�q�

+ f
4

✏µ↵��q�p
�q� + f

5

✏µ���p↵p
�q� + f

6

✏µ���q↵p
�q� (2.38)

Next, we apply Bose symmetry of the two vector currents and impose the condition

i�µ↵�(p, q) = i�µ�↵(q, p), (2.39)

This means that the coe�cients in (2.37) satisfy the relations

f
1

(p, q) = �f
2

(q, p),

f
3

(p, q) = �f
6

(q, p), (2.40)

f
4

(p, q) = �f
5

(q, p).

In addition, the function �µ↵�(p, q) in (2.22) has dimension of energy. Dimensional analysis
shows that f

1

and f
2

are dimensionless, whereas f
3

-f
6

have dimensions of (energy)�2. These
latter functions, therefore, are expressed in terms of convergent integrals that are unambiguous.
As a consequence, all ambiguities of the linearly divergent integrals (2.23) have to be contained
in the coe�cients f

1

and f
2

.
To take care of this, we notice that

p↵i�µ↵�(p, q) =
⇣

f
2

� p2f
5

� p · qf
6

⌘

✏µ�↵�q
↵p�,

q�i�µ↵�(p, q) =
⇣

f
1

� q2f
4

� p · qf
3

⌘

✏µ↵��q
�p�, (2.41)

(p+ q)µi�µ↵�(p, q) =
⇣

� f
1

+ f
2

⌘

✏↵���q
�p�.

14

There are a number of properties of the function �µ↵�(p, q) that can be deduced from general
considerations. Due to the presence of the axial-vector current in the correlation function,
the amplitude is parity odd, so it should contain a Levi-Civita tensor. Given this, Poincaré
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Let’s do a bit of dimensional analysis:

[i�µ↵� ] = E

[f1] = [f2] = E0

[f3] = . . . = [f6] = E�2

(

By power counting, f1 and f2 are logarithmically divergent integrals while 
f3 ,…, f6 are convergent integrals.
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valid for any four-dimensional vector w↵. Then we write the amplitude in terms of just six
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Next, we apply Bose symmetry of the two vector currents and impose the condition
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All ambiguities in the amplitude are confined to the coefficients f1 and f2.
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14Imposing the vector (gauge) Ward identities 
From the first two identities we find that the ambiguities in f

1

and f
2

can be fixed by demanding
the conservation of the vector current is imposed, i.e. when the Ward identities
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are satisfied. Once this is done, i�µ↵�(p, q) is written only in terms of the coe�cients f
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, that
are convergent and unambiguous. Thus, the anomaly is given by the following combination of
finite integrals
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To compute the Ward identity for the axial current, (p + q)µi�µ↵�(p, q), we go back to the
integrand in Eq. (2.23)
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where in the second line we have used the cyclic property of the trace and {�
5

, �µ} = 0.
It is now time to integrate over the loop momentum `µ. Adding the two diagrams we write

(p+ q)µi�µ↵�(p, q) = e2

Z

d4`

(2⇡)4
I↵�(`, p, q) + e2
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d4`
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I�↵(`, q, p). (2.48)

15

completely fixes the ambiguous integrals in terms of finite ones

f1(p, q) = q2f4(p, q)� p · qf3(p, q)

f2(p, q) = p2f5(p, q)� p · qf6(p, q)
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Using these identities, the axial anomaly is given by
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where in the second line we have used the cyclic property of the trace and {�
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, �µ} = 0.
It is now time to integrate over the loop momentum `µ. Adding the two diagrams we write
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15

With these general considerations we learn a number of things:

• All ambiguities in the triangle diagram are codified in nominally 
logarithmically divergent integrals.

• These are completely fixed by requiring the conservation of 
the gauge current.

• Once this is done, the axial anomaly is given by finite integrals.
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Using these identities, the axial anomaly is given by
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the conservation of the vector current is imposed, i.e. when the Ward identities

p↵i�µ↵�(p, q) = 0 = q�i�µ↵�(p, q). (2.42)
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where in the second line we have used the cyclic property of the trace and {�
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It is now time to integrate over the loop momentum `µ. Adding the two diagrams we write
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With these general considerations we learn a number of things:

• All ambiguities in the triangle diagram are codified in nominally 
logarithmically divergent integrals.

• These are completely fixed by requiring the conservation of 
the gauge current.

• Once this is done, the axial anomaly is given by finite integrals.

why logarithmically divergent?
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Using these identities, the axial anomaly is given by

From the first two identities we find that the ambiguities in f
1

and f
2

can be fixed by demanding
the conservation of the vector current is imposed, i.e. when the Ward identities

p↵i�µ↵�(p, q) = 0 = q�i�µ↵�(p, q). (2.42)

are satisfied. Once this is done, i�µ↵�(p, q) is written only in terms of the coe�cients f
3

-f
8

, that
are convergent and unambiguous. Thus, the anomaly is given by the following combination of
finite integrals

(p+ q)µi�µ↵�(p, q) =
h

p2f
5

� q2f
4

+ p · q(�f
3

+ f
6

)
i

✏↵���q
�p�. (2.43)

To compute the Ward identity for the axial current, (p + q)µi�µ↵�(p, q), we go back to the
integrand in Eq. (2.23)

I↵�(`, p, q) = Tr



i

/̀� m+ i✏
(/p+ /q)�

5

i

/̀� /p � /q � m+ i✏
��

i

/̀� /p � m+ i✏
�↵

�

. (2.44)

Using the trivial identity

/p+ /q = (/̀� m) � (/̀� /p � /q +m) + 2m (2.45)

we write

i

/̀� m+ i✏
(/p � /q)�

5

i

/̀� /p � /q � m
= i�

5

i

/̀� /p � /q � m+ i✏
+ i

i

/̀� m+ i✏
�

5

+ 2m
i

/̀� m+ i✏
�

5

i

/̀� /p � /q � m+ i✏
(2.46)

Then, the integrand takes the form

I↵�(`, p, q) = iTr

✓

�
5

i

/̀� /p � /q � m+ i✏
��

i

/̀� /p � m+ i✏
�↵

◆

� iTr

✓

�
5

i

/̀� /p � m+ i✏
�↵

i

/̀� m+ i✏
��

◆

(2.47)

+ 2mTr

✓

i

/̀� m+ i✏
�

5

i

/̀� /p � /q � m+ i✏
��

i

/̀� /p � m+ i✏
�↵

◆

,

where in the second line we have used the cyclic property of the trace and {�
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• These are completely fixed by requiring the conservation of 
the gauge current.
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An alternative procedure
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The anomaly can be reobtained using a point-splitting regularization of the 
axial-vector current composite operator

where            and      satisfies✏µ ✏0 > 0
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The regularization is gauge invariant only for a = 1

o
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We compute now its divergence
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@µJ
µ
A(x)reg = 2im[ �5 ]reg � ie 

⇣
x+

✏

2

⌘
�

µ
�5 

⇣
x� ✏

2

⌘

⇥ exp

"
iea

Z
x+✏/2

x�✏/2
dy

↵

A ↵

(y)

#

Identifying                and expanding to first order in      we haveJ
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Identifying                and expanding to first order in      we haveJ

µ
A(x)reg ✏µ

and now compute its vacuum expectation value

⇥
"
A

µ
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� A
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#

@µJ
µ
A(x)reg = 2im[ �5 ]reg � iJ

µ
A(x)reg✏

↵
⇣
@↵Aµ � a@µA↵ + . . .
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@µhJµ
A(x)regiA = 2imh[ �5 ]regiA � ie✏

↵hJµ
A(x)regiA

⇣
@↵Aµ � a@µA↵ + . . .
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Next, we evaluate hJµ
A(x)regiA

hJµ

A(x)regiA =
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where the propagator can be computed diagrammatically as:

G(x, y)A =
x x x x

y y y y
⇥⇥ ⇥ ⇥ ⇥⇥⇥+ + + + . . .
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G(x, y)A =
x x x x

y y y y
⇥⇥ ⇥ ⇥ ⇥⇥⇥+ + + + . . .

We look at the term linear in the gauge field:

⇥⇥ = ie

Z
d4p

(2⇡)4

Z
d4q

(2⇡)4

✓
i

p/+ 1
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e�iq·xeip·✏A

µ
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2
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2

With this we go back to

and 

hJµ

A(x)iA = �Tr

h
�

µ

�5G

⇣
x� ✏

2

, x+

✏

2

⌘

A

i
exp

"
iea

Z
x+✏/2

x�✏/2
dy

↵

A ↵

(y)

#

@µhJµ
A(x)regiA = 2imh[ �5 ]regiA � ie✏

↵hJµ
A(x)regiA

⇣
@↵Aµ � a@µA↵ + . . .

⌘
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G(x, y)A =
x x x x

y y y y
⇥⇥ ⇥ ⇥ ⇥⇥⇥+ + + + . . .

We look at the term linear in the gauge field:
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With this we go back to
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Furthermore, we use 

✏↵eip·✏ = �i
@

@p↵
eip·✏ integration by parts

@µhJµ
A(x)regiA = 2imh[ �5 ]regiA � ie✏

↵hJµ
A(x)regiA

⇣
@↵Aµ � a@µA↵ + . . .
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With this result we return to the regularized anomaly

=
ie
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Using the simple identity

lim
✏!0
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↵hJµ
A(x)regiA =

ie
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2
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we arrive at the result 
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For 

We recover the ABJ anomaly and 
the vector current is conserved

a = 1 For a = �1

We can repeat the same calculation for the vector current

whose divergence is given by 

lim
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@µhJµ
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Thus, we have arrived at the result:

The axial-vector current is conserved 
but gauge invariance is broken.

lim
✏!0

@µhJµ
V (x)regiA =

e

2

64⇡2
(1� a)✏µ⌫↵�Fµ⌫F↵�
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Quantum corrections
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What about higher loops?

The ABJ anomaly is a one-loop result. Is it corrected by higher loop diagrams? 
E.g. 

2.3 The Adler-Bardeen Theorem

A very interesting feature of the axial anomaly computed in the previous section is that its
form does not receive corrections due to higher loop diagrams. This result was proved by S.
Adler and W. Bardeen [5] and goes by the name of Adler-Bardeen theorem.

The gist of the argument can be easily grasped. Pertubatively, the origin of the anomaly
lies in the ambiguity associated with the linearly divergent integral in the triangle diagram. At
two loops, corrections to this result are obtained by inserting photon propagators, for example

+ + + . . . (2.66)

By naive power counting, these diagrams are linearly divergent and it might seem that we are
running into the same problem as in the one-loop case. There is a very important di↵erence,
though. Here, unlike in the triangle diagram, the linear divergence is not associated with the
integration over the loop momentum coupling to the axial-vector current. In computing the
contributions of these diagrams, we can integrate first over the fermion loop momentum and
only then over the second loop momentum associated running in the photon line. Since the
fermion loop contains now five propagators, the first integral is finite and does not require regu-
larization. We have still to do the second (divergent) integral over the photon loop momentum.
Fortunately, this remaining integration can be regularized in a way that do not interfere with
chiral symmetry: for example, a gauge-invariant higher-derivative term

�S =
1

⇤2

Z

d4xFµ⌫⇤F µ⌫ (2.67)

can be added to the QED action, so the photon propagator has a leading large-momentum
behavior of the form ⇤2p�4. The result is that chiral invariance is nowhere broken by the
regularization procedure and, as a consequence, the two-loop diagrams do not contribute to the
divergence of the axial-vector current5.

The heuristic argument that we have just presented can be refined into a proof to all orders
of the nonrenormalization of the axial anomaly. The generic L-loop diagram contributing to
the Ward identity (p + q)µ�µ↵�(p, q) can be drawn in the form shown in Fig. 1, where the
subgraph G0 only includes vector current couplings. Its contribution can be regularized in a
way compatible with gauge invariant, such as adding the extra term (2.71) to the QED action.

5Notice that adding the term (2.71) to the action does not modify the one-loop result for the anomaly, since
the triangle diagram does not contain any photon propagator.

20

These diagrams contain five fermion propagator. The integration over the 
fermion loop momentum

24

lim
x

f x 0 (0.276)

0 (0.277)

0 (0.278)

JµA J!V J"V (0.279)
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. . .
d4ℓ
2$ 4

5

i 1

i
ℓ 'i i%

. . . (0.285)

is convergent. The remaining loops can be handled using a gauge invariant 
regulator, for example

2.3 Nonrenormalization Theorems 27

As a matter of fact, there is also the possibility of defining the theory in such a way
that neither the vector, nor the axial-vector current are conserved. However, unlike
the axial-vector, the vector current couples to a gauge field and its nonconservation
leads to disastrous results for the theory. That is why the axial anomaly is forced
upon us by the consistency of QED at the quantum level.

2.3 Nonrenormalization Theorems

A very interesting feature of the axial anomaly obtained in the previous section is
that it does not receive corrections due to higher loop diagrams. This result, known
as the Adler-Bardeen theorem, was proved in [3]. Although the full proof of this
result is quite involved, the gist of the argument can be easily grasped.
Pertubatively, the origin of the anomaly lies in the ambiguity associated with the

linearly divergent integral associated with the triangle diagram. At two loops, cor-
rections to this result are obtained by inserting photon propagators in the diagram,
for example

. . . (2.44)

The contribution of each of the diagrams contains five fermion propagators. This
eliminates the ambiguous linearly divergent integral appearing at one loop diagram,
rendering the integration convergent. We have still to integrate over the photon loop
momentum. However, this remaining integration can be regularized in a way that do
not interfere with chiral symmetry: for example, a gauge-invariant term

/S
1
02

d4xFµ% Fµ% (2.45)

can be added to the QED action, leading to a photon propagatorwith a leading large-
momentum behavior of the form02p 4. The result is that the two-loop diagrams do
not contribute to the divergence of the axial-vector current and therefore the anomaly
does not receive corrections to this order2. This argument at two loops carries over
to higher loop-diagrams resulting in that the perturbative contribution to the axial
anomaly is exhausted by the one-loop result.
A much simpler proof of the Adler-Bardeen theorem can be constructed using

the renormalization group equations [4].
Here comes the discussion of Zee’s proof.

2 Notice that adding the term (2.45) to the action does not modify the one-loop result for the
anomaly, since the triangle diagram does not contain any photon propagator.

25

Gµ! p
"2

p4
(0.286)
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Figure 1: Generic topology contributing to kµi�µ↵�(p, q) at n-loops, with k = p + q. The
subgraph G0 includes only vector couplings.

21

Applying the Feynman rules of QED, we write (to simplify the notation we define k = p+ q)

kµi�µ↵�(p, q)
L-loop =
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#)

.

The first line in this equation contains the contribution of the subgraph G0 and the integration
over loop momenta inside it. By ` we have denoted the momentum running in the fermion loop
depicted in Fig. 1. The momenta in the 2n+1 individual fermion propagators to the left of the
axial-vector current insertion are parametrized as ` � rj (with j = 1, . . . , b), whereas those to
the right as ` � ra � k (with j = b, . . . , 2n). At this point it is useful to use the trivial identity
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5
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We use this expression now in the third line of Eq. (2.72). The first term gives the con-
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The first line in this equation contains the contribution of the subgraph G0 and the integration
over loop momenta inside it. By ` we have denoted the momentum running in the fermion loop
depicted in Fig. 1. The momenta in the 2n+1 individual fermion propagators to the left of the
axial-vector current insertion are parametrized as ` � rj (with j = 1, . . . , b), whereas those to
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We use this expression now in the third line of Eq. (2.72). The first term gives the con-
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Consider a generic topology contributing 
to the divergence of the axial-vector 
current:

This heuristic argument can be made more precise.
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We simplify this expression using,
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The first line in this equation contains the contribution of the subgraph G0 and the integration
over loop momenta inside it. By ` we have denoted the momentum running in the fermion loop
depicted in Fig. 1. The momenta in the 2n+1 individual fermion propagators to the left of the
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tribution of the diagram in Fig. 1 but with ikµ�

µ�
5

replaced by 2im�
5

. This is the n-loop
contribution to the amplitude �↵�(p, q) introduced in Eq. (2.49). Thus, we write

kµi�µ↵�(p, q)
L-loop = 2mi�↵�(p, q)

L-loop +�↵�(p, q). (2.71)

To compute �↵�(p, q), we plug the last two terms appearing in Eq. (2.74) into the expression
(2.72). After simple manipulations the relevant term can be recast as

�
2n
X

b=1

tr

("

b
Y

j=1

(�ie�↵j)
i

/̀+ /rj � m

#

i�
5

"

2n
Y

j=b+1

(�ie�↵j)
i

/̀+ /rj � /k � m

#

�
"

b�1

Y

j=1

(�ie�↵j)
i

/̀+ /rj � m

#

i�
5

"

2n
Y

j=b

(�ie�↵j)
i

/̀+ /rj � /k � m

#)

. (2.72)

22

Applying the Feynman rules of QED, we write (to simplify the notation we define k = p+ q)

kµi�µ↵�(p, q)
L-loop =

Z L�1

Y

a=1

d4`a
(2⇡)4

�(G0
)

↵� (r
1

, . . . , r
2n; p, q)

⇥
Z

d4`

(2⇡)4

2n
X

b=1

Tr

("

b�1

Y

j=1

(�ie�↵j)
i

/̀+ /rj � m

#

⇥ (�ie�↵b)
i

/̀+ /rb � m
ikµ�

µ�
5

i

/̀+ /rb � k � m
(2.68)

⇥
"

2n
Y

j=b+1

(�ie�↵j)
i

/̀+ /rj � /k � m

#)

.

The first line in this equation contains the contribution of the subgraph G0 and the integration
over loop momenta inside it. By ` we have denoted the momentum running in the fermion loop
depicted in Fig. 1. The momenta in the 2n+1 individual fermion propagators to the left of the
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We use this expression now in the third line of Eq. (2.72). The first term gives the con-
tribution of the diagram in Fig. 1 but with ikµ�
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The first line in this equation contains the contribution of the subgraph G0 and the integration
over loop momenta inside it. By ` we have denoted the momentum running in the fermion loop
depicted in Fig. 1. The momenta in the 2n+1 individual fermion propagators to the left of the
axial-vector current insertion are parametrized as ` � rj (with j = 1, . . . , b), whereas those to
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We use this expression now in the third line of Eq. (2.72). The first term gives the con-
tribution of the diagram in Fig. 1 but with ikµ�
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The first line in this equation contains the contribution of the subgraph G0 and the integration
over loop momenta inside it. By ` we have denoted the momentum running in the fermion loop
depicted in Fig. 1. The momenta in the 2n+1 individual fermion propagators to the left of the
axial-vector current insertion are parametrized as ` � rj (with j = 1, . . . , b), whereas those to
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We use this expression now in the third line of Eq. (2.72). The first term gives the con-
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The first line in this equation contains the contribution of the subgraph G0 and the integration
over loop momenta inside it. By ` we have denoted the momentum running in the fermion loop
depicted in Fig. 1. The momenta in the 2n+1 individual fermion propagators to the left of the
axial-vector current insertion are parametrized as ` � rj (with j = 1, . . . , b), whereas those to
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We use this expression now in the third line of Eq. (2.68). The first term gives the con-
tribution of the diagram in Fig. 1 but with ikµ�
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The first line in this equation contains the contribution of the subgraph G0 and the integration
over loop momenta inside it. By ` we have denoted the momentum running in the fermion loop
depicted in Fig. 1. The momenta in the 2n+1 individual fermion propagators to the left of the
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We use this expression now in the third line of Eq. (2.68). The first term gives the con-
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The first line in this equation contains the contribution of the subgraph G0 and the integration
over loop momenta inside it. By ` we have denoted the momentum running in the fermion loop
depicted in Fig. 1. The momenta in the 2n+1 individual fermion propagators to the left of the
axial-vector current insertion are parametrized as ` � rj (with j = 1, . . . , b), whereas those to
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We use this expression now in the third line of Eq. (2.72). The first term gives the con-
tribution of the diagram in Fig. 1 but with ikµ�
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Thus, the result has the structure:
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over loop momenta inside it. By ` we have denoted the momentum running in the fermion loop
depicted in Fig. 1. The momenta in the 2n+1 individual fermion propagators to the left of the
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We use this expression now in the third line of Eq. (2.72). The first term gives the con-
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The first line in this equation contains the contribution of the subgraph G0 and the integration
over loop momenta inside it. By ` we have denoted the momentum running in the fermion loop
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We use this expression now in the third line of Eq. (2.72). The first term gives the con-
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Thus, the result has the structure:

The relevant term contributing to                is 
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We use this expression now in the third line of Eq. (2.72). The first term gives the con-
tribution of the diagram in Fig. 1 but with ikµ�

µ�
5

replaced by 2im�
5

. This is the n-loop
contribution to the amplitude �↵�(p, q) introduced in Eq. (2.49). Thus, we write

kµi�µ↵�(p, q)
L-loop = 2mi�↵�(p, q)

L-loop +�↵�(p, q). (2.71)

To compute �↵�(p, q), we plug the last two terms appearing in Eq. (2.74) into the expression
(2.72). After simple manipulations the relevant term can be recast as

�
2n
X

b=1

tr

("

b
Y

j=1

(�ie�↵j)
i

/̀+ /rj � m

#

i�
5

"

2n
Y

j=b+1

(�ie�↵j)
i

/̀+ /rj � /k � m

#

�
"

b�1

Y

j=1

(�ie�↵j)
i

/̀+ /rj � m

#

i�
5

"

2n
Y

j=b

(�ie�↵j)
i

/̀+ /rj � /k � m

#)

. (2.72)

22
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The only surviving terms are

Hence, the final result for the anomalous piece is:

Due to the relative minus sign resulting from the anticommutation of �
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with �↵b in (2.72),
most of the terms in the sum cancel. In fact, the only surviving ones are
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Using this result we are led to the expression
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where we have used the cyclicity of the trace to move �
5

to the left in the second product.
For loop diagrams with more than two photons attached to the fermion loop, n > 1, the

integration over ` is convergent (it contains 2n+ 1 � 5 fermion propagators). It is thus safe to
shift the loop momenta without incurring in ambiguities, so the integration over the two terms
inside the curly bracket in Eq. (2.78) cancel each other and we find

�↵�(p, q) = 0 for n > 1. (2.75)

For n = 1 both integrals are linearly divergent and we are faced again with the calculation of
the triangle diagrams carried out above. We might have additional loops in the subgraph G0,
but this corresponds either to rescattering of the two emitted photons or self-energy corrections.
These diagrams contribute to the renormalization of the electric charge or the gauge field wave
function, but the form of the anomaly found in Eq. (2.62) remains unchanged. With this we
have proved the Adler-Bardeen theorem: the value of the axial anomaly does not receive any
corrections beyond one loop, apart from renormalizations of the electric charge and gauge field
strength.

The argument presented here is not a↵ected by considering diagrams with more than two
emitted photons from G0. In the case of diagrams containing external fermions we have to
consider, besides the topology shown in Fig. 1 (including a number of fermion lines emitted
from the subgraphG0), a second one in which the axial current is hooked to a fermion propagator
connected to the external fermion lines. This second type of diagrams only contributes to the
part of the amplitude 2mi�↵�(p, q) that vanishes in the limit of zero fermion mass and does
not a↵ect the anomaly (see the original paper by Adler and Bardeen [5] for details).
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For n > 1 we can shift the integration momentum and cancel the terms.  

The ABJ anomaly does not receive quantum corrections

(Adler-Bardeen theorem)
Steven Adler

(b. 1939)
William A. Bardeen

(b. 1941)
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emitted photons from G0. In the case of diagrams containing external fermions we have to
consider, besides the topology shown in Fig. 1 (including a number of fermion lines emitted
from the subgraphG0), a second one in which the axial current is hooked to a fermion propagator
connected to the external fermion lines. This second type of diagrams only contributes to the
part of the amplitude 2mi�↵�(p, q) that vanishes in the limit of zero fermion mass and does
not a↵ect the anomaly (see the original paper by Adler and Bardeen [5] for details).
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UV or IR?
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On general grounds, the anomaly is understood as a fundamental 
incompatibility between the classical symmetry and the regularization 
procedure. 

From this point of view the anomaly can be regarded as a UV effect.

The symmetry is anomalous because the breaking introduced by the 
regularization cannot be subtracted by a local counterterm added to the 
action.

But there is also an IR side…
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Let us look at the on-shell amplitude

where                      We recall,

2.4 Ultraviolet or infrared?

Many presentations of the axial anomaly stress the role of the ultraviolet regularization as the
origin of the quantum breakdown of chiral symmetry. This might lead to regard the anomaly
as a consequence of the need to regularize the theory. This is, however, not exactly the case.
As we have already seen, the axial anomaly comes from the finite part of the triangle diagram
which is independent of the particular gauge invariant regulator used. To clarify this point, we
go back to i�µ↵�(p, q) defined in Eq. (2.20). By taking the two photons on shell, we evaluate
the physical amplitude

h0|Jµ
A

(0)|p, qiA = i�µ↵�(p, q) fA↵(p) fA�(q)

�

�

�

�

�

p2
=q2=0

, (2.76)

where fAµ(p) is the momentum space gauge field satisfying the transversality condition

pµ fAµ(p) = 0. (2.77)

The quantity i�µ↵�(p, q) is given by Eq. (2.38). Enforcing the vector Ward identity fixes

f
1

(p, q) = p · qf
3

(p, q), f
2

(p, q) = p · qf
6

(p, q), (2.78)

where we have set p2 = q2 = 0. This same on-shell condition implies that all functions are
symmetric under the interchange of p and q. Calculating the amplitude using a gauge invariant
regulator leads to

f
3

(p, q) = �f
6

(p, q) =
ie2

⇡2

Z

1

0

dx

Z

1�x

0

dy
xy

2xyp · q + i✏
,

f
4

(p, q) = �f
5

(p, q) =
ie2

⇡2

Z

1

0

dx

Z

1�x

0

dy
y(1 � y)

2xyp · q + i✏
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The on-shell amplitude is then written in terms of these two integrals as

i�µ↵�(p, q)

�

�

�

�
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p2
=q2=0

= f
3

(p, q)
h

p · q ✏µ↵��(p� � q�) + ✏µ↵��p�p
�q� � ✏µ���q↵p

�q�
i

+ f
4

(p, q)
h

✏µ↵��q� � ✏µ���p↵

i

p�q� (2.80)

The term proportional to f
4

(p, q) vanishes after contracting the amplitude with the momenta
of the external photons, p↵q�. As for the first term, it is useful to use the ✏-tensor identity

⌘µ(⌫✏↵���) = 0 (2.81)
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There are a number of properties of the function �µ↵�(p, q) that can be deduced from general
considerations. Due to the presence of the axial-vector current in the correlation function,
the amplitude is parity odd, so it should contain a Levi-Civita tensor. Given this, Poincaré
invariance leads to the following structure in terms of eight monomials

i�µ↵�(p, q) = f
1

✏µ↵��p
� + f

2

✏µ↵��q
� + f

3

✏µ↵��p�p
�q�

+ f
4

✏µ↵��q�p
�q� + f

5

✏µ���p↵p
�q� (2.36)

+ f
6

✏µ���q↵p
�q� + f

7

✏↵���pµp
�q� + f

8

✏↵���qµp
�q�,

where fi ⌘ fi(p, q) are functions of the momenta p and q. As a matter of fact, the functions
f

7

(p, q) and f
8

(p, q) can be reabsorbed in the remaining ones using the identity

✏↵���wµ + ✏���µw↵ + ✏��µ↵w� + ✏�µ↵�w� + ✏µ↵��w� = 0, (2.37)

valid for any four-dimensional vector w↵. Then we write the amplitude in terms of just six
scalar functions

i�µ↵�(p, q) = f
1

✏µ↵��p
� + f

2
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� + f

3
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Next, we apply Bose symmetry of the two vector currents and impose the condition

i�µ↵�(p, q) = i�µ�↵(q, p), (2.39)

This means that the coe�cients in (2.37) satisfy the relations

f
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(p, q) = �f
2

(q, p),

f
3

(p, q) = �f
6

(q, p), (2.40)

f
4

(p, q) = �f
5

(q, p).

In addition, the function �µ↵�(p, q) in (2.22) has dimension of energy. Dimensional analysis
shows that f

1

and f
2

are dimensionless, whereas f
3

-f
6

have dimensions of (energy)�2. These
latter functions, therefore, are expressed in terms of convergent integrals that are unambiguous.
As a consequence, all ambiguities of the linearly divergent integrals (2.23) have to be contained
in the coe�cients f

1

and f
2

.
To take care of this, we notice that
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(p+ q)µi�µ↵�(p, q) =
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� f
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+ f
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⌘

✏↵���q
�p�.

14

and due to the on-shell condition 

fi(p, q) = fi(p · q) (symmetric in p and q)

and from Bose symmetry                ,                , and                . f1 = �f2 f3 = �f6 f4 = �f5

Vector current conservation further implies:

f2 � p2f5 � p · qf6 = 0

f1 � q2f4 � p · qf3 = 0
f1(p, q) = p · qf3(p, q)

h0|Jµ
A(0)|p, qiA = �µ↵�(p, q) fA↵(p) fA�(q)

�����
p2=q2=0
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The amplitude is then given only in terms of              and f3(p, q) f4(p, q)

2.4 Ultraviolet or infrared?

Many presentations of the axial anomaly stress the role of the ultraviolet regularization as the
origin of the quantum breakdown of chiral symmetry. This might lead to regard the anomaly
as a consequence of the need to regularize the theory. This is, however, not exactly the case.
As we have already seen, the axial anomaly comes from the finite part of the triangle diagram
which is independent of the particular gauge invariant regulator used. To clarify this point, we
go back to i�µ↵�(p, q) defined in Eq. (2.20). By taking the two photons on shell, we evaluate
the physical amplitude

h0|Jµ
A

(0)|p, qiA = i�µ↵�(p, q) fA↵(p) fA�(q)
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where fAµ(p) is the momentum space gauge field satisfying the transversality condition

pµ fAµ(p) = 0. (2.77)

The quantity i�µ↵�(p, q) is given by Eq. (2.38). Enforcing the vector Ward identity fixes
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2

(p, q) = p · qf
6

(p, q), (2.78)

where we have set p2 = q2 = 0. This same on-shell condition implies that all functions are
symmetric under the interchange of p and q. Calculating the amplitude using a gauge invariant
regulator leads to
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The on-shell amplitude is then written in terms of these two integrals as

i�µ↵�(p, q)

�

�

�

�

�

p2
=q2=0

= f
3

(p, q)
h

p · q ✏µ↵��(p� � q�) + ✏µ↵��p�p
�q� � ✏µ���q↵p

�q�
i

+ f
4

(p, q)
⇣

✏µ↵��q� � ✏µ���p↵

⌘

p�q� (2.80)

The term proportional to f
4

(p, q) vanishes after contracting the amplitude with the momenta
of the external photons, p↵q�. As for the first term, it is useful to use the ✏-tensor identity

⌘µ(⌫✏↵���) = 0 (2.81)
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Due to                   , the term with            does not contribute to the amplitude.f4(p, q)

Using as wellto write

�p · q✏µ↵��p� = ✏↵���pµp
�q� + ✏µ���p↵p

�q� + ✏µ↵��p�p
�q�,

p · q✏µ↵��q� = ✏↵���qµp
�q� + ✏µ���q↵p

�q� + ✏µ↵��q�p
�q�. (2.82)

We use these results in Eq. (2.80) to arrive at the following expression of the physical
amplitude

h0|Jµ
A(0)|p, qiA = �(p+ q)µf

3

(p, q)✏↵���p
�q� fA ↵(p) fA �(q), (2.83)

where the function f
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(p, q) has the value

lim
m!0
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so the final expression for the amplitude is

lim
m!0
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(p+ q)µ

(p+ q)2 + i✏
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�q� fA ↵(p) fA �(q). (2.85)

We observe the existence of a pole at momentum p+q = 0. This is crucial for the axial anomaly:
the contraction of (2.85) with (p+ q)µ cancels this pole and retrieves the ABJ anomaly (2.64).

The existence of this pole is related to a discontinuity in the imaginary part of the triangle
diagram as the mass of the fermion is taken to zero. To see how this happens, we use the
Cutkosky rules to write

Im�µ↵�(p, q) = + (2.86)

where the cuts indicate that the fermion propagators are replaced by delta functions enforcing
the on-shell condition for the corresponding line and we are supposed to sum over the polar-
izations and momenta of the intermediate state. Thus, the imaginary part of the amplitude is
written in terms of two on-shell amplitudes: one corresponding to the creation by Jµ

A(0) of a
electron-positron pair out of the vacuum and a second one corresponding to the annihilation of
the pair into two photons
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the amplitude takes the form:

h0|Jµ
A(0)|p, qiA = i(p+ q)µf3(p, q)✏↵���p

�q� fA ↵(p) fA �(q)
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2.4 Ultraviolet or infrared?

Many presentations of the axial anomaly stress the role of the ultraviolet regularization as the
origin of the quantum breakdown of chiral symmetry. This might lead to regard the anomaly
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where we have set p2 = q2 = 0. This same on-shell condition implies that all functions are
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The term proportional to f
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(p, q) vanishes after contracting the amplitude with the momenta
of the external photons, p↵q�. As for the first term, it is useful to use the ✏-tensor identity

⌘µ(⌫✏↵���) = 0 (2.81)
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We observe the existence of a pole at momentum p+q = 0. This is crucial for the axial anomaly:
the contraction of (2.85) with (p+ q)µ cancels this pole and retrieves the ABJ anomaly (2.64).

The existence of this pole is related to a discontinuity in the imaginary part of the triangle
diagram as the mass of the fermion is taken to zero. To see how this happens, we use the
Cutkosky rules to write
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where the cuts indicate that the fermion propagators are replaced by delta functions enforcing
the on-shell condition for the corresponding line and we are supposed to sum over the polar-
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the amplitude takes the form:

There are a number of properties of the function �µ↵�(p, q) that can be deduced from general
considerations. Due to the presence of the axial-vector current in the correlation function,
the amplitude is parity odd, so it should contain a Levi-Civita tensor. Given this, Poincaré
invariance leads to the following structure in terms of eight monomials
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where fi ⌘ fi(p, q) are functions of the momenta p and q. As a matter of fact, the functions
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(p, q) can be reabsorbed in the remaining ones using the identity

✏↵���wµ + ✏���µw↵ + ✏��µ↵w� + ✏�µ↵�w� + ✏µ↵��w� = 0, (2.37)

valid for any four-dimensional vector w↵. Then we write the amplitude in terms of just six
scalar functions

i�µ↵�(p, q) = f
1

✏µ↵��p
� + f

2

✏µ↵��q
� + f

3

✏µ↵��p�p
�q�

+ f
4

✏µ↵��q�p
�q� + f

5

✏µ���p↵p
�q� + f

6

✏µ���q↵p
�q� (2.38)

Next, we apply Bose symmetry of the two vector currents and impose the condition

i�µ↵�(p, q) = i�µ�↵(q, p), (2.39)

This means that the coe�cients in (2.37) satisfy the relations

f
1

(p, q) = �f
2

(q, p),

f
3

(p, q) = �f
6

(q, p), (2.40)

f
4

(p, q) = �f
5

(q, p).

In addition, the function �µ↵�(p, q) in (2.22) has dimension of energy. Dimensional analysis
shows that f

1

and f
2

are dimensionless, whereas f
3

-f
6

have dimensions of (energy)�2. These
latter functions, therefore, are expressed in terms of convergent integrals that are unambiguous.
As a consequence, all ambiguities of the linearly divergent integrals (2.23) have to be contained
in the coe�cients f

1

and f
2

.
To take care of this, we notice that

p↵i�µ↵�(p, q) =
⇣

f
2

� p2f
5

� p · qf
6

⌘

✏µ�↵�q
↵p�,

q�i�µ↵�(p, q) =
⇣

f
1

� q2f
4

� p · qf
3

⌘

✏µ↵��q
�p�, (2.41)

(p+ q)µi�µ↵�(p, q) =
⇣

� f
1

+ f
2

⌘

✏↵���q
�p�.

14

h0|Jµ
A(0)|p, qiA = i(p+ q)µf3(p, q)✏↵���p

�q� fA ↵(p) fA �(q)
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The function             can be computed from Feynman diagramsf3(p, q)

f3(p, q) =
ie

2

⇡

2

Z 1

0
dx

Z 1�x

0
dy

xy

2xyp · q �m

2

If we take a naive massless limit,

lim
m!0

f3(p, q) =
ie2

2⇡2

1

(p+ q)2

and we find

At the level of the current, the anomaly is signalled by a massless pole!

h0|Jµ
A(0)|p, qiA = i(p+ q)µf3(p, q)✏↵���p

�q� fA ↵(p) fA �(q)

lim
m!0

h0|Jµ
A(0)|p, qiA = � e2

2⇡2

(p+ q)µ

(p+ q)2
✏↵���p

�q� fA ↵(p) fA �(q).
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Thus, the anomaly has two faces:

• When looking at the divergence of the current, it comes associated with 
ambiguities in the UV behavior of the integrals. Fixing them forces us to give 
up the axial-vector symmetry in favor of gauge invariance.

• When looking at the current itself, it is signaled by the appearance of a 
massless pole (i.e., an IR effect)



M.Á. Vázquez-Mozo                                                              Introduction to Anomalies in QFT                                                PhD Course, Universidad Autónoma de Madrid

In fact, being careful, we should have written the result for the amplitude as

lim
m!0

h0|Jµ
A(0)|p, qiA = � e2

2⇡2

(p+ q)µ

(p+ q)2 + i✏
✏↵���p

�q� fA ↵(p) fA �(q).

The reason is that the integration over     in 

produces a logarithm and an imaginary part

for (p+ q)2 > 4m2

f3(p, q) =
ie

2

⇡

2

Z 1

0
dx

Z 1�x

0
dy

xy

2xyp · q �m

2

y

Im f3(p, q) 6= 0

when           the real part develops a pole and the imaginary part a delta-
function singularity whose coefficient is the anomaly

m ! 0

lim
m!0

Im�µ↵�(p, q) =
e2

2⇡
✏↵���p�q�(p+ q)µ�

⇣
(p+ q)2

⌘
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⌘

This contrasts with our diagrammatic calculation of the anomaly. Indeed, using the well-
known distribution identity

1

x+ i✏
= PV

1

x
� i⇡�(x), (2.95)

where PV denotes the Cauchy principal value, we find from Eq. (2.85) the following nonvan-
ishing result for the imaginary part of the amplitude

Im�µ↵�(p, q)

�

�

�

�

�

m2
=0

=
e2

2⇡
✏↵���p�q�(p+ q)µ�

⇣

(p+ q)2
⌘

. (2.96)

From this point of view, the axial anomaly is marked by a discontinuity in the imaginary (ab-
sorptive) part of the triangle diagram in the limit of zero fermion mass. Its value is determined
by the coe�cient of the delta function. This indicates again that the value of the anomaly is
unambiguously defined and independent of the regularization method employ in the calcula-
tion, since the imaginary part of the amplitude is not a↵ected by any subtraction needed to
make sense of the corresponding dispersion relation.

What we see here is that the axial anomaly has two faces. At the level of the divergence of
the axial-vector current it emerges from the need of fixing the ultraviolet ambiguities associated
with the triangle diagram in a way compatible with gauge invariance. If instead of looking at
the divergence of the axial-vector current we compute the expectation value of the current itself
what we find is an infrared pole whose residue is given by the anomaly. This infrared sensitivity
of the amplitude h0|Jµ

A(0)|p, qiA is regulated by a finite value of the fermion mass acts. Keeping
it finite, m > 0, results in the pole being replaced by a resonance at low momentum.

Physically, the presence of the pole indicates the existence of an intermediate massless state
|k;�i created by the action of the vector-axial current on the vacuum. Due to the presence
of the ✏-tensor, it has to be a pseudoscalar state coupling to two photons. Diagrammatically
(k = p+ q),

kµ

fA (q)

fA (p)

= h0|Jµ
A

(0)|k;�i i

k2

hk;�|p, qiA . (2.97)

Using the Poincaré invariance of the vacuum, the state |k,�i can be normalized as

h0|Jµ
A

(x)|k;�i = kµe�ik·x, (2.98)

whereas the coupling to the photons is fixed by the anomaly

hp+ q;�|p, qiA =
e2

2⇡2

✏↵���p
�q� fA ↵(p) fA �(q). (2.99)

27
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This discontinuity in the imaginary part of the amplitude can be understood 
physically. 

Let us use the Cutkosky rules:

where, e.g.

2.2 Quantum Breakdown of the Vector-Axial Symmetry 23

e2 0 T JµA 0 J
α
V x1 J

β
V x2 0

d4p
2π 4

d4q
2π 4 iΓ

µαβ p,q eip x1 iq x2 (2.23)

The quantum conservation equation takes the form

µ JµA x A
i
2

d4y1d4y2A α y1 A β y2 (2.24)

d4p
2π 4

d4q
2π 4 p q µiΓµαβ p,q eip y1 x iq y2 x .

To find whether the axial symmetry in massless QED is affected by a quantum
anomaly, we have to compute p q µΓµαβ p,q . The function iΓ p,q is given by
the two momentum space Feynman diagrams

iΓµαβ p,q

qβ

pα

p q µ

qβ

pα

p q µ (2.25)

whose contributions can be found using the Feynman rules of QED

iΓµαβ p,q e2
d4ℓ
2π 4 Tr

i
ℓ p iε

γµγ5
i

ℓ q iε
γα

i
ℓ iε

γβ

p q
α β

. (2.26)

These integrals are linearly divergent and therefore ambiguous. To see this am-
biguity, we look at a the simple integral

I a dx f x a . (2.27)

If the integral converges, it is easy to prove that the result is independent of a. When
it does not, it needs to be regularized. However, its derivative

I a dx f x a f f . (2.28)

is finite, even when the integral I a diverges logarithmic or linearly. In the first case,
f x tends to zero when x and we find that I a 0 and the integral (2.27) is
independent of a. If the integral is linearly divergent, the function f x approaches
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p q
α β

. (2.26)

These integrals are linearly divergent and therefore ambiguous. To see this am-
biguity, we look at a the simple integral

I a dx f x a . (2.27)

If the integral converges, it is easy to prove that the result is independent of a. When
it does not, it needs to be regularized. However, its derivative

I a dx f x a f f . (2.28)

is finite, even when the integral I a diverges logarithmic or linearly. In the first case,
f x tends to zero when x and we find that I a 0 and the integral (2.27) is
independent of a. If the integral is linearly divergent, the function f x approaches

(   ) (   )×

to write

�p · q✏µ↵��p� = ✏↵���pµp
�q� + ✏µ���p↵p

�q� + ✏µ↵��p�p
�q�,

p · q✏µ↵��q� = ✏↵���qµp
�q� + ✏µ���q↵p

�q� + ✏µ↵��q�p
�q�. (2.82)

We use these results in Eq. (2.80) to arrive at the following expression of the physical
amplitude

h0|Jµ
A(0)|p, qiA = �(p+ q)µf

3

(p, q)✏↵���p
�q� fA ↵(p) fA �(q), (2.83)

where the function f
3

(p, q) has the value

lim
m!0

f
3

(p, q) =
ie2

2⇡2

1

(p+ q)2 + i✏
, (2.84)

so the final expression for the amplitude is

lim
m!0

h0|Jµ
A(0)|p, qiA = � ie2

2⇡2

(p+ q)µ

(p+ q)2 + i✏
✏↵���p

�q� fA ↵(p) fA �(q). (2.85)

We observe the existence of a pole at momentum p+q = 0. This is crucial for the axial anomaly:
the contraction of (2.85) with (p+ q)µ cancels this pole and retrieves the ABJ anomaly (2.64).

The existence of this pole is related to a discontinuity in the imaginary part of the triangle
diagram as the mass of the fermion is taken to zero. To see how this happens, we use the
Cutkosky rules to write

Im�µ↵�(p, q) = + (2.86)

where the cuts indicate that the fermion propagators are replaced by delta functions enforcing
the on-shell condition for the corresponding line and we are supposed to sum over the polar-
izations and momenta of the intermediate state. Thus, the imaginary part of the amplitude is
written in terms of two on-shell amplitudes: one corresponding to the creation by Jµ

A(0) of a
electron-positron pair out of the vacuum and a second one corresponding to the annihilation of
the pair into two photons

Im�µ↵�(p, q)✏↵(p,�1

)✏�(q,�2

)

⇠
X

�1,�2

Z

d3k
1

Z

d3k
2 out
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1

;q,�
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|k
1

, �
1

;k
2

, �
2

i
in

(2.87)

⇥
out

hk
1

, �
1

;k
2

, �
2

|Jµ
A(0)|0iin

,

25

Im�µ↵�(p, q) ⇠
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This discontinuity in the imaginary part of the amplitude can be understood 
physically. 

Let us use the Cutkosky rules:

where, e.g.
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These integrals are linearly divergent and therefore ambiguous. To see this am-
biguity, we look at a the simple integral

I a dx f x a . (2.27)

If the integral converges, it is easy to prove that the result is independent of a. When
it does not, it needs to be regularized. However, its derivative

I a dx f x a f f . (2.28)

is finite, even when the integral I a diverges logarithmic or linearly. In the first case,
f x tends to zero when x and we find that I a 0 and the integral (2.27) is
independent of a. If the integral is linearly divergent, the function f x approaches
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We observe the existence of a pole at momentum p+q = 0. This is crucial for the axial anomaly:
the contraction of (2.85) with (p+ q)µ cancels this pole and retrieves the ABJ anomaly (2.64).

The existence of this pole is related to a discontinuity in the imaginary part of the triangle
diagram as the mass of the fermion is taken to zero. To see how this happens, we use the
Cutkosky rules to write

Im�µ↵�(p, q) = + (2.86)

where the cuts indicate that the fermion propagators are replaced by delta functions enforcing
the on-shell condition for the corresponding line and we are supposed to sum over the polar-
izations and momenta of the intermediate state. Thus, the imaginary part of the amplitude is
written in terms of two on-shell amplitudes: one corresponding to the creation by Jµ

A(0) of a
electron-positron pair out of the vacuum and a second one corresponding to the annihilation of
the pair into two photons
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The first important thing is to invoke the Landau-Yang theorem: no state 
of spin-one can decay into two on-shell photons.

Thus, the fermion-antifermion system should have zero spin. This means that 
in the center of mass frame they have the same helicities

�1 = �2 ⌘ �
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represent the helicities of the fermion-antifermion pair and we have introduced the
photon polarization vectors ✏↵(p,�1

) and ✏�(q,�2

).
We analyze now the conditions for the amplitude on the right-hand side of this equation

to be nonvanishing. The first thing to point out, is that the so-called Landau-Yang theorem
[6] forbids the decay of state with spin s = 1 into two on-shell photons. This means that the
fermion-antifermion intermediate state must have vanishing total spin and, as a consequence,
in the center of mass reference frame the helicities of both fermions have to be equal, �
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.
However, this condition makes the amplitude for the creation of the fermion pair by the axial
current equal to zero in the limit of massless fermions. On general grounds, this amplitude is
proportional to the fermion bilinear
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In the limit of massless fermions, the helicities of the fermion and the antifermion tend respec-
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Interestingly, the second amplitude in (2.87) also vanishes in the massless limit as a conse-
quence of the conservation of chirality in the QED vertex. This follows from the general form
of the amplitude for the fermion-antifermion annihilation into two photons, which is given by
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Focusing in the two numerators of this expression, and using (2.90), we find in the zero mass
limit the two terms in the amplitude are proportional to factors of the form

v⌥(k2

)�µ�↵�⌫u±(k) = 0. (2.93)

Then, our naive conclusion would be that the imaginary part of the triangle diagram vanishes
in the limit of massless fermions

lim
m!0

Im�µ↵�(p, q) = 0. (2.94)
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We turn now to the annihilation of the two fermions
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we conclude that the second amplitude also vanish in the massless limit
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Thus, we would find that the amplitude approaches zero with the mass

Im�µ↵�(p, q) ⇠ 0
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Thus, the anomaly appears as an IR discontinuity of the imaginary part of 
the amplitude.

Im�
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⇣
(p+ q)2

⌘

Interestingly, this imaginary part in unambiguous.
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But not so fast…

In the massless limit, on-shell fermions can emit collinear on-shell photons, and 
the intermediate state can fall on-shell.

2.2 Quantum Breakdown of the Vector-Axial Symmetry 23

e2 0 T JµA 0 J
α
V x1 J

β
V x2 0

d4p
2π 4

d4q
2π 4 iΓ

µαβ p,q eip x1 iq x2 (2.23)

The quantum conservation equation takes the form

µ JµA x A
i
2

d4y1d4y2A α y1 A β y2 (2.24)

d4p
2π 4

d4q
2π 4 p q µiΓµαβ p,q eip y1 x iq y2 x .

To find whether the axial symmetry in massless QED is affected by a quantum
anomaly, we have to compute p q µΓµαβ p,q . The function iΓ p,q is given by
the two momentum space Feynman diagrams

iΓµαβ p,q

qβ

pα

p q µ

qβ

pα

p q µ (2.25)

whose contributions can be found using the Feynman rules of QED

iΓµαβ p,q e2
d4ℓ
2π 4 Tr

i
ℓ p iε

γµγ5
i

ℓ q iε
γα

i
ℓ iε

γβ

p q
α β

. (2.26)

These integrals are linearly divergent and therefore ambiguous. To see this am-
biguity, we look at a the simple integral

I a dx f x a . (2.27)

If the integral converges, it is easy to prove that the result is independent of a. When
it does not, it needs to be regularized. However, its derivative

I a dx f x a f f . (2.28)

is finite, even when the integral I a diverges logarithmic or linearly. In the first case,
f x tends to zero when x and we find that I a 0 and the integral (2.27) is
independent of a. If the integral is linearly divergent, the function f x approaches

The denominator then vanishes and we have an indeterminate limit.

That is why, being more careful we obtained:
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A two-dimensional excursion:
the Schwinger model
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To keep things simple, we consider a massless Dirac fermion in 1+1 
dimensions, and compactify the spatial direction to a circle of length L. 

We consider the following representation of the Dirac matrices

The Dirac sea picture. The axial anomaly in two dimensions can be also obtained using a
Dirac sea analysis of the e↵ect of the external field on the vacuum of the theory [7]. We use
the following representation of the Dirac matrices

�0 ⌘ �
1

=

✓

0 1
1 0

◆

, �1 ⌘ i�
2

=

✓

0 1
�1 0

◆

. (2.131)

This is a chiral representation since the matrix �
5

is diagonal7

�
5

⌘ ��0�1 =

✓

1 0
0 �1

◆

, (2.132)

so we can write the two-component Dirac spinor  in terms a pair of Weyl spinors of opposite
chirality as

 =

✓

u
+

u�

◆

. (2.133)

In this representation, the field equations take the simple form

(@
0

� @
1

)u
+

= 0, (@
0

+ @
1

)u� = 0, (2.134)

whose general solution can be immediately written as

u
+

= u
+

(x0 + x1), u� = u�(x
0 � x1). (2.135)

These two solutions represent two wave packets moving along the spatial dimension respectively
to the left (u

+

) and to the right (u�). Notice that according to our convention the left-moving
u

+

is a right-handed spinor (positive helicity) whereas the right-moving u� is a left-handed
spinor (negative helicity). Taking this into account, the properly normalized wave functions for
free particles with well defined energy-momentum pµ = (E, p) are written as

v
(E)

± (x0 ± x1) =
1p
L
e�iE(x0±x1

) with p = ⌥E. (2.136)

As it is always the case with a relativistic wave equation we have found both positive and
negative energy solutions. For v

(E)

+

, since E = �p, we see that the solutions with positive
energy are those with negative momentum p < 0, whereas the negative energy solutions are
plane waves with p > 0. For the left-handed spinor u� the situation is reversed. Besides, since
the spatial direction is compact with length L the momentum p is quantized according to

p =
2⇡n

L
, n 2 Z. (2.137)
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negative energy solutions. For v

(E)

+

, since E = �p, we see that the solutions with positive
energy are those with negative momentum p < 0, whereas the negative energy solutions are
plane waves with p > 0. For the left-handed spinor u� the situation is reversed. Besides, since
the spatial direction is compact with length L the momentum p is quantized according to

p =
2⇡n

L
, n 2 Z. (2.137)
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The Dirac sea picture. The axial anomaly in two dimensions can be also obtained using a
Dirac sea analysis of the e↵ect of the external field on the vacuum of the theory [7]. We use
the following representation of the Dirac matrices
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This is a chiral representation since the matrix �
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is diagonal7

�
5

⌘ ��0�1 =

✓

1 0
0 �1

◆

, (2.132)

so we can write the two-component Dirac spinor  in terms a pair of Weyl spinors of opposite
chirality as
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In this representation, the field equations take the simple form
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whose general solution can be immediately written as
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These two solutions represent two wave packets moving along the spatial dimension respectively
to the left (u

+

) and to the right (u�). Notice that according to our convention the left-moving
u

+

is a right-handed spinor (positive helicity) whereas the right-moving u� is a left-handed
spinor (negative helicity). Taking this into account, the properly normalized wave functions for
free particles with well defined energy-momentum pµ = (E, p) are written as
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± (x0 ± x1) =
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e�iE(x0±x1

) with p = ⌥E. (2.136)

As it is always the case with a relativistic wave equation we have found both positive and
negative energy solutions. For v

(E)

+

, since E = �p, we see that the solutions with positive
energy are those with negative momentum p < 0, whereas the negative energy solutions are
plane waves with p > 0. For the left-handed spinor u� the situation is reversed. Besides, since
the spatial direction is compact with length L the momentum p is quantized according to

p =
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L
, n 2 Z. (2.137)
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the wave function for free fermions are
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As it is always the case with a relativistic wave equation we have found both positive and
negative energy solutions. For v
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, since E = �p, we see that the solutions with positive
energy are those with negative momentum p < 0, whereas the negative energy solutions are
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with

and since the spatial direction is compatified, the momentum is quantized:
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As it is always the case with a relativistic wave equation we have found both positive and
negative energy solutions. For v
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+

, since E = �p, we see that the solutions with positive
energy are those with negative momentum p < 0, whereas the negative energy solutions are
plane waves with p > 0. For the left-handed spinor u� the situation is reversed. Besides, since
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Figure 2: Spectrum of the massless two-dimensional Dirac field. We denote by v± the states
with dispersion relation E = ⌥p.

The spectrum of the theory is represented in Fig. 2.
In the Dirac sea picture, the ground state of the theory is the one in which all states with

E  0 are filled (see Fig. 3). Exciting a particle in the Dirac sea produces a positive energy
fermion plus a hole that is interpreted as an antiparticle. This gives us the key on how to
quantize the theory. In the expansion of the operator u± in terms of the modes (2.136) we
associate positive energy states with annihilation operators whereas the states with negative
energy are associated with creation operators for the corresponding antiparticle

u±(x) =
X

E>0

h

a±(E)v(E)

± (x) + b†±(E)v(E)

± (x)⇤
i

. (2.138)

The operator a±(E) annihilates a particle with positive energy E and momentum ⌥E. In the
same way b†±(E) creates out of the vacuum an antiparticle with positive energy E and spatial
momentum ⌥E. In the Dirac sea picture the operator b±(E)† is originally an annihilation
operator for a state of the sea with negative energy �E. As in the four-dimensional case
the problem of the negative energy states is solved by interpreting annihilation operators for
negative energy states as creation operators for the corresponding antiparticle with positive
energy (and vice versa). The operators appearing in the expansion of u± in Eq. (2.138) satisfy
the usual fermionic algebra

{a�(E), a†�0(E 0)} = {b�(E), b†�0(E 0)} = �E,E0���0 , (2.139)

where we have introduced the label �,�0 = ±. In addition, a�(E), a†�(E) anticommute with
b�0(E 0), b†�0(E 0).

7In any even number of dimensions �5 is defined to satisfy the conditions (�5)2 = 1 and {�5, �
µ} = 0.

33

+ −

p p

E E

v v

Figure 2: Spectrum of the massless two-dimensional Dirac field. We denote by v± the states
with dispersion relation E = ⌥p.

The spectrum of the theory is represented in Fig. 2.
In the Dirac sea picture, the ground state of the theory is the one in which all states with

E  0 are filled (see Fig. 3). Exciting a particle in the Dirac sea produces a positive energy
fermion plus a hole that is interpreted as an antiparticle. This gives us the key on how to
quantize the theory. In the expansion of the operator u± in terms of the modes (2.136) we
associate positive energy states with annihilation operators whereas the states with negative
energy are associated with creation operators for the corresponding antiparticle

u±(x) =
X

E>0

h

a±(E)v(E)

± (x) + b†±(E)v(E)

± (x)⇤
i

. (2.138)

The operator a±(E) annihilates a particle with positive energy E and momentum ⌥E. In the
same way b†±(E) creates out of the vacuum an antiparticle with positive energy E and spatial
momentum ⌥E. In the Dirac sea picture the operator b±(E)† is originally an annihilation
operator for a state of the sea with negative energy �E. As in the four-dimensional case
the problem of the negative energy states is solved by interpreting annihilation operators for
negative energy states as creation operators for the corresponding antiparticle with positive
energy (and vice versa). The operators appearing in the expansion of u± in Eq. (2.138) satisfy
the usual fermionic algebra

{a�(E), a†�0(E 0)} = {b�(E), b†�0(E 0)} = �E,E0���0 , (2.139)

where we have introduced the label �,�0 = ±. In addition, a�(E), a†�(E) anticommute with
b�0(E 0), b†�0(E 0).

7In any even number of dimensions �5 is defined to satisfy the conditions (�5)2 = 1 and {�5, �
µ} = 0.
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the spectrum is:

E = ⌥p
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To quantize the Dirac fermion, we construct firts the ground state of the 
theory by filling all negative energy states (Dirac sea) 

and expand:

p

E E

p

0,+ 0,−

Figure 3: The two branches in the vacuum of the theory. The solid points represent the filled
negative energy states.

The massless theory
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is invariant under both U(1)
V

u± �! ei↵u±, (2.141)

and U(1)
A

transformations

u± �! e±i↵u±. (2.142)

The corresponding Noether currents are
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whose conserved charges are
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negative energy states.
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Figure 2: Spectrum of the massless two-dimensional Dirac field. We denote by v± the states
with dispersion relation E = ⌥p.

The spectrum of the theory is represented in Fig. 2.
In the Dirac sea picture, the ground state of the theory is the one in which all states with

E  0 are filled (see Fig. 3). Exciting a particle in the Dirac sea produces a positive energy
fermion plus a hole that is interpreted as an antiparticle. This gives us the key on how to
quantize the theory. In the expansion of the operator u± in terms of the modes (2.136) we
associate positive energy states with annihilation operators whereas the states with negative
energy are associated with creation operators for the corresponding antiparticle

u±(x) =
X

E>0

h

a±(E)v(E)

± (x) + b†±(E)v(E)

± (x)⇤
i

. (2.138)

The operator a±(E) annihilates a particle with positive energy E and momentum ⌥E. In the
same way b†±(E) creates out of the vacuum an antiparticle with positive energy E and spatial
momentum ⌥E. In the Dirac sea picture the operator b±(E)† is originally an annihilation
operator for a state of the sea with negative energy �E. As in the four-dimensional case
the problem of the negative energy states is solved by interpreting annihilation operators for
negative energy states as creation operators for the corresponding antiparticle with positive
energy (and vice versa). The operators appearing in the expansion of u± in Eq. (2.138) satisfy
the usual fermionic algebra

{a�(E), a†�0(E 0)} = {b�(E), b†�0(E 0)} = �E,E0���0 , (2.139)

where we have introduced the label �,�0 = ±. In addition, a�(E), a†�(E) anticommute with
b�0(E 0), b†�0(E 0).

7In any even number of dimensions �5 is defined to satisfy the conditions (�5)2 = 1 and {�5, �
µ} = 0.
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with dispersion relation E = ⌥p.

The spectrum of the theory is represented in Fig. 2.
In the Dirac sea picture, the ground state of the theory is the one in which all states with

E  0 are filled (see Fig. 3). Exciting a particle in the Dirac sea produces a positive energy
fermion plus a hole that is interpreted as an antiparticle. This gives us the key on how to
quantize the theory. In the expansion of the operator u± in terms of the modes (2.136) we
associate positive energy states with annihilation operators whereas the states with negative
energy are associated with creation operators for the corresponding antiparticle

u±(x) =
X

E>0

h

a±(E)v(E)

± (x) + b†±(E)v(E)

± (x)⇤
i

. (2.138)

The operator a±(E) annihilates a particle with positive energy E and momentum ⌥E. In the
same way b†±(E) creates out of the vacuum an antiparticle with positive energy E and spatial
momentum ⌥E. In the Dirac sea picture the operator b±(E)† is originally an annihilation
operator for a state of the sea with negative energy �E. As in the four-dimensional case
the problem of the negative energy states is solved by interpreting annihilation operators for
negative energy states as creation operators for the corresponding antiparticle with positive
energy (and vice versa). The operators appearing in the expansion of u± in Eq. (2.138) satisfy
the usual fermionic algebra

{a�(E), a†�0(E 0)} = {b�(E), b†�0(E 0)} = �E,E0���0 , (2.139)

where we have introduced the label �,�0 = ±. In addition, a�(E), a†�(E) anticommute with
b�0(E 0), b†�0(E 0).

7In any even number of dimensions �5 is defined to satisfy the conditions (�5)2 = 1 and {�5, �
µ} = 0.
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Figure 2: Spectrum of the massless two-dimensional Dirac field. We denote by v± the states
with dispersion relation E = ⌥p.

The spectrum of the theory is represented in Fig. 2.
In the Dirac sea picture, the ground state of the theory is the one in which all states with

E  0 are filled (see Fig. 3). Exciting a particle in the Dirac sea produces a positive energy
fermion plus a hole that is interpreted as an antiparticle. This gives us the key on how to
quantize the theory. In the expansion of the operator u± in terms of the modes (2.136) we
associate positive energy states with annihilation operators whereas the states with negative
energy are associated with creation operators for the corresponding antiparticle

u±(x) =
X

E>0

h

a±(E)v(E)

± (x) + b†±(E)v(E)

± (x)⇤
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. (2.138)

The operator a±(E) annihilates a particle with positive energy E and momentum ⌥E. In the
same way b†±(E) creates out of the vacuum an antiparticle with positive energy E and spatial
momentum ⌥E. In the Dirac sea picture the operator b±(E)† is originally an annihilation
operator for a state of the sea with negative energy �E. As in the four-dimensional case
the problem of the negative energy states is solved by interpreting annihilation operators for
negative energy states as creation operators for the corresponding antiparticle with positive
energy (and vice versa). The operators appearing in the expansion of u± in Eq. (2.138) satisfy
the usual fermionic algebra

{a�(E), a†�0(E 0)} = {b�(E), b†�0(E 0)} = �E,E0���0 , (2.139)

where we have introduced the label �,�0 = ±. In addition, a�(E), a†�(E) anticommute with
b�0(E 0), b†�0(E 0).

7In any even number of dimensions �5 is defined to satisfy the conditions (�5)2 = 1 and {�5, �
µ} = 0.
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 : annihilates a fermion with E > 0 and p = ∓E

 : creates an antifermion with E > 0 and p = ± E 
     (i.e., annihilates a fermion with E < 0 and p = ∓ E)

where,
(± chirality)



M.Á. Vázquez-Mozo                                                              Introduction to Anomalies in QFT                                                PhD Course, Universidad Autónoma de Madrid

We look now at the classical symmetries of our theory
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Figure 3: The two branches in the vacuum of the theory. The solid points represent the filled
negative energy states.
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Figure 3: The two branches in the vacuum of the theory. The solid points represent the filled
negative energy states.
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Axial U(1):

 �! ei��5 u± �! e±i�u±

whose associated Noether current is

Jµ
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Figure 3: The two branches in the vacuum of the theory. The solid points represent the filled
negative energy states.
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with

simplifies to

@� +

= 0, @
+

 � = 0. (2.107)

This little calculation shows a very important fact about chiral fermions in two dimensions:
positive and negative chirality fermions are identified with left- and right-movers. Since parity
reverses the sign of x1,

P : x± �! x⌥, (2.108)

it interchanges left- with right-movers and therefore positive with negative chirality spinors

P :  ± �!  ⌥. (2.109)

The axial anomaly. We study now the theory of a single massless Dirac spinor coupled to
an external potential A µ

S[ , ,A ] =

Z

d2x
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i @/ � eJµA
µ
⌘

, (2.110)

where  ± = 1

2

(1± �
5

) and Jµ =  �µ . This action has an additional symmetry under global
U(1) axial transformations acting as

 �! ei��5 , � 2 R, (2.111)

which in terms of the two chiral spinors  ± it reads

 ± �! e±i� ±. (2.112)

By Noether’s theorem, associated with this invariance there is a conserved current

Jµ
A

=  �µ�
5

 . (2.113)

Using light-cone coordinates, its components are

J
A± ⌘ ± ±�± ± = ±J±, (2.114)

whereas the classical conservation equation @µjAµ = 0 takes the form

@
+

J
A� + @�JA+

= 0. (2.115)
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Using the orthogonality relations of the wave functionsfor the axial one. Moreover, using the orthonormality relations for the modes v(E)

± (x)
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0

dx1 v
(E)

± (x)⇤ v(E0
)

± (x) = �E,E0 (2.146)

both conserved charges can be explicitly written in terms of creation-annihilation opeators as

Q
V

=
X

E>0

h

a†
+

(E)a
+

(E) � b†
+

(E)b
+

(E) + a†�(E)a�(E) � b†�(E)b�(E)
i
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From these expressions we see how Q
V

counts the net fermion number, i.e. the number
of particles minus antiparticles, independently of their helicity. The axial charge Q

A

, on the
other hand, counts the net number of positive minus negative helicity states. In the case of the
vector current we have subtracted a formally divergent vacuum contribution to the charge (the
“charge of the Dirac sea”).

In the free theory there is of course no problem with the conservation of either Q
V

or Q
A

,
since the occupation numbers do not change. What we want to study is the e↵ect of coupling
the theory to the electric field E . We work in the gauge A 0 = 0. Instead of solving the problem
exactly we are going to use the following trick: we simulate the electric field by adiabatically
varying in a long time ⌧

0

the vector potential A 1 from zero value to E⌧
0

. The e↵ect of the
electromagnetic coupling in the theory is a shift in the momentum according to

p �! p � eA 1, (2.148)

where e is the charge of the fermions. Since we assumed that the vector potential varies
adiabatically, we can take it to be approximately constant at each time.

Now we have to understand the e↵ect on the vacuum depicted in Fig. 3 of switching on the
vector potential. Increasing adiabatically A 1 results, according to Eq. (2.148), in decreasing
the momentum of the state. What happens to the energy depends on whether we consider
states with dispersion relation E = �p (the branch v

+

) or E = p (the branch v�).
The result is that the two branches move as shown in Fig. 4. Some of the negative energy

states of the v
+

branch acquire positive energy while the same number of the empty positive
energy states of the other branch v� sink into empty negative energy states. Physically this
means that the external electric field E creates a number of particle-antiparticle pairs out of
the vacuum.

We have to count the number of such pairs created by the electric field after a time ⌧
0

. This
is given by

N =
L

2⇡
eE ⌧

0

. (2.149)

35

for the axial one. Moreover, using the orthonormality relations for the modes v(E)

± (x)

Z L

0

dx1 v
(E)

± (x)⇤ v(E0
)

± (x) = �E,E0 (2.146)

both conserved charges can be explicitly written in terms of creation-annihilation opeators as

Q
V

=
X

E>0

h

a†
+

(E)a
+

(E) � b†
+

(E)b
+

(E) + a†�(E)a�(E) � b†�(E)b�(E)
i

,

(2.147)
Q

A

=
X

E>0

h

a†
+

(E)a
+

(E) � b†
+

(E)b
+

(E) � a†�(E)a�(E) + b†�(E)b�(E)
i

.

From these expressions we see how Q
V

counts the net fermion number, i.e. the number
of particles minus antiparticles, independently of their helicity. The axial charge Q

A

, on the
other hand, counts the net number of positive minus negative helicity states. In the case of the
vector current we have subtracted a formally divergent vacuum contribution to the charge (the
“charge of the Dirac sea”).

In the free theory there is of course no problem with the conservation of either Q
V

or Q
A

,
since the occupation numbers do not change. What we want to study is the e↵ect of coupling
the theory to the electric field E . We work in the gauge A 0 = 0. Instead of solving the problem
exactly we are going to use the following trick: we simulate the electric field by adiabatically
varying in a long time ⌧

0

the vector potential A 1 from zero value to E⌧
0

. The e↵ect of the
electromagnetic coupling in the theory is a shift in the momentum according to

p �! p � eA 1, (2.148)

where e is the charge of the fermions. Since we assumed that the vector potential varies
adiabatically, we can take it to be approximately constant at each time.

Now we have to understand the e↵ect on the vacuum depicted in Fig. 3 of switching on the
vector potential. Increasing adiabatically A 1 results, according to Eq. (2.148), in decreasing
the momentum of the state. What happens to the energy depends on whether we consider
states with dispersion relation E = �p (the branch v

+

) or E = p (the branch v�).
The result is that the two branches move as shown in Fig. 4. Some of the negative energy

states of the v
+

branch acquire positive energy while the same number of the empty positive
energy states of the other branch v� sink into empty negative energy states. Physically this
means that the external electric field E creates a number of particle-antiparticle pairs out of
the vacuum.

We have to count the number of such pairs created by the electric field after a time ⌧
0

. This
is given by

N =
L

2⇡
eE ⌧

0

. (2.149)

35

for the axial one. Moreover, using the orthonormality relations for the modes v(E)

± (x)

Z L

0

dx1 v
(E)

± (x)⇤ v(E0
)

± (x) = �E,E0 (2.146)

both conserved charges can be explicitly written in terms of creation-annihilation opeators as

Q
V

=
X

E>0

h

a†
+

(E)a
+

(E) � b†
+

(E)b
+

(E) + a†�(E)a�(E) � b†�(E)b�(E)
i

,

(2.147)
Q

A

=
X

E>0

h

a†
+

(E)a
+

(E) � b†
+

(E)b
+

(E) � a†�(E)a�(E) + b†�(E)b�(E)
i

.

From these expressions we see how Q
V

counts the net fermion number, i.e. the number
of particles minus antiparticles, independently of their helicity. The axial charge Q

A

, on the
other hand, counts the net number of positive minus negative helicity states. In the case of the
vector current we have subtracted a formally divergent vacuum contribution to the charge (the
“charge of the Dirac sea”).

In the free theory there is of course no problem with the conservation of either Q
V

or Q
A

,
since the occupation numbers do not change. What we want to study is the e↵ect of coupling
the theory to the electric field E . We work in the gauge A 0 = 0. Instead of solving the problem
exactly we are going to use the following trick: we simulate the electric field by adiabatically
varying in a long time ⌧

0

the vector potential A 1 from zero value to E⌧
0

. The e↵ect of the
electromagnetic coupling in the theory is a shift in the momentum according to

p �! p � eA 1, (2.148)

where e is the charge of the fermions. Since we assumed that the vector potential varies
adiabatically, we can take it to be approximately constant at each time.

Now we have to understand the e↵ect on the vacuum depicted in Fig. 3 of switching on the
vector potential. Increasing adiabatically A 1 results, according to Eq. (2.148), in decreasing
the momentum of the state. What happens to the energy depends on whether we consider
states with dispersion relation E = �p (the branch v

+

) or E = p (the branch v�).
The result is that the two branches move as shown in Fig. 4. Some of the negative energy

states of the v
+

branch acquire positive energy while the same number of the empty positive
energy states of the other branch v� sink into empty negative energy states. Physically this
means that the external electric field E creates a number of particle-antiparticle pairs out of
the vacuum.

We have to count the number of such pairs created by the electric field after a time ⌧
0

. This
is given by

N =
L

2⇡
eE ⌧

0

. (2.149)

35

(fermions minus 
antifermions)

(“net” number of 
+ ’ v e m i n u s − ’ v e 
chirality states)

we find

+ −

p p

E E

v v

Figure 2: Spectrum of the massless two-dimensional Dirac field. We denote by v± the states
with dispersion relation E = ⌥p.

The spectrum of the theory is represented in Fig. 2.
In the Dirac sea picture, the ground state of the theory is the one in which all states with

E  0 are filled (see Fig. 3). Exciting a particle in the Dirac sea produces a positive energy
fermion plus a hole that is interpreted as an antiparticle. This gives us the key on how to
quantize the theory. In the expansion of the operator u± in terms of the modes (2.136) we
associate positive energy states with annihilation operators whereas the states with negative
energy are associated with creation operators for the corresponding antiparticle

u±(x) =
X

E>0

h

a±(E)v(E)

± (x) + b†±(E)v(E)

± (x)⇤
i

. (2.138)

The operator a±(E) annihilates a particle with positive energy E and momentum ⌥E. In the
same way b†±(E) creates out of the vacuum an antiparticle with positive energy E and spatial
momentum ⌥E. In the Dirac sea picture the operator b±(E)† is originally an annihilation
operator for a state of the sea with negative energy �E. As in the four-dimensional case
the problem of the negative energy states is solved by interpreting annihilation operators for
negative energy states as creation operators for the corresponding antiparticle with positive
energy (and vice versa). The operators appearing in the expansion of u± in Eq. (2.138) satisfy
the usual fermionic algebra

{a�(E), a†�0(E 0)} = {b�(E), b†�0(E 0)} = �E,E0���0 , (2.139)

where we have introduced the label �,�0 = ±. In addition, a�(E), a†�(E) anticommute with
b�0(E 0), b†�0(E 0).

7In any even number of dimensions �5 is defined to satisfy the conditions (�5)2 = 1 and {�5, �
µ} = 0.
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In the free theory, both charges are conserved… but what about switching an 
external electrical field?

We do it adiabatically. In the              gauge 
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From these expressions we see how Q
V

counts the net fermion number, i.e. the number
of particles minus antiparticles, independently of their helicity. The axial charge Q

A

, on the
other hand, counts the net number of positive minus negative helicity states. In the case of the
vector current we have subtracted a formally divergent vacuum contribution to the charge (the
“charge of the Dirac sea”).

In the free theory there is of course no problem with the conservation of either Q
V

or Q
A

,
since the occupation numbers do not change. What we want to study is the e↵ect of coupling
the theory to the electric field E . We work in the gauge A 0 = 0. Instead of solving the problem
exactly we are going to use the following trick: we simulate the electric field by adiabatically
varying in a long time ⌧

0

the vector potential A 1 from zero value to E⌧
0

. The e↵ect of the
electromagnetic coupling in the theory is a shift in the momentum according to

p �! p � eA 1, (2.148)

where e is the charge of the fermions. Since we assumed that the vector potential varies
adiabatically, we can take it to be approximately constant at each time.

Now we have to understand the e↵ect on the vacuum depicted in Fig. 3 of switching on the
vector potential. Increasing adiabatically A 1 results, according to Eq. (2.148), in decreasing
the momentum of the state. What happens to the energy depends on whether we consider
states with dispersion relation E = �p (the branch v

+

) or E = p (the branch v�).
The result is that the two branches move as shown in Fig. 4. Some of the negative energy

states of the v
+

branch acquire positive energy while the same number of the empty positive
energy states of the other branch v� sink into empty negative energy states. Physically this
means that the external electric field E creates a number of particle-antiparticle pairs out of
the vacuum.

We have to count the number of such pairs created by the electric field after a time ⌧
0

. This
is given by

N =
L

2⇡
eE ⌧

0
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energy states of the other branch v� sink into empty negative energy states. Physically this
means that the external electric field E creates a number of particle-antiparticle pairs out of
the vacuum.

We have to count the number of such pairs created by the electric field after a time ⌧
0

. This
is given by

N =
L
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eE ⌧

0

. (2.149)
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for the axial one. Moreover, using the orthonormality relations for the modes v(E)

± (x)

Z L

0

dx1 v
(E)

± (x)⇤ v(E0
)

± (x) = �E,E0 (2.146)

both conserved charges can be explicitly written in terms of creation-annihilation opeators as

Q
V

=
X

E>0

h

a†
+

(E)a
+

(E) � b†
+

(E)b
+

(E) + a†�(E)a�(E) � b†�(E)b�(E)
i

,

(2.147)
Q
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X
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(E)b
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(E) � a†�(E)a�(E) + b†�(E)b�(E)
i
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From these expressions we see how Q
V

counts the net fermion number, i.e. the number
of particles minus antiparticles, independently of their helicity. The axial charge Q

A

, on the
other hand, counts the net number of positive minus negative helicity states. In the case of the
vector current we have subtracted a formally divergent vacuum contribution to the charge (the
“charge of the Dirac sea”).

In the free theory there is of course no problem with the conservation of either Q
V

or Q
A

,
since the occupation numbers do not change. What we want to study is the e↵ect of coupling
the theory to the electric field E . We work in the gauge A 0 = 0. Instead of solving the problem
exactly we are going to use the following trick: we simulate the electric field by adiabatically
varying in a long time ⌧

0

the vector potential A 1 from zero value to E⌧
0

. The e↵ect of the
electromagnetic coupling in the theory is a shift in the momentum according to

p �! p � eA 1, (2.148)

where e is the charge of the fermions. Since we assumed that the vector potential varies
adiabatically, we can take it to be approximately constant at each time.

Now we have to understand the e↵ect on the vacuum depicted in Fig. 3 of switching on the
vector potential. Increasing adiabatically A 1 results, according to Eq. (2.148), in decreasing
the momentum of the state. What happens to the energy depends on whether we consider
states with dispersion relation E = �p (the branch v

+
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The result is that the two branches move as shown in Fig. 4. Some of the negative energy

states of the v
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Adiabaticity allows to treat the system at each instant as “time independent” (no 
transitions).
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The shift have different effects on the states on each branch of the spectrum:
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Figure 4: E↵ect of the electric field on the vacuum shown in Fig. 3. Some of the occupied
negative energy states in the brach v

+

acquire positive energy, while the same number of empty
positive energy states in the branch v� shift to negative energy and become holes in the Dirac
sea.

To get this expression we have divided the shift of the spectrum eE ⌧
0

by the separation between
energy levels given by 2⇡

L
[cf. Eq. (2.137)]. The value of the charges at the time ⌧

0

are

Q
V

(⌧
0

) = (N � 0) + (0 � N) = 0,

Q
A

(⌧
0

) = (N � 0) � (0 � N) = 2N. (2.150)

Therefore we conclude that the coupling to the electric field produces a violation in the con-
servation of the axial charge per unit time given by

Q̇
A

=
e

⇡
EL. (2.151)

This result translates into a nonconservation of the axial vector current

@µJ
µ
A

=
e~
⇡

E , (2.152)

where we have restored ~ to make clear that we are dealing with a quantum e↵ect. In addition,
the fact that �Q

V

= 0 guarantees that the vector current remains conserved also quantum
mechanically, @µJ

µ
V

= 0.

Infrared interpretation. One of the distinctive features of the axial anomaly in two dimen-
sions is that it is a purely infrared e↵ect. This contrast with the result in four dimensions,
where the anomaly has both infrared and ultraviolet interpretations.
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A number of negative chirality empty states 
become “holes” (negative chirality antifermions), 
while some occupied negative energy states with 
positive chirality get positive energy (positive 
chirality fermions)
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We have found that, in the presence of an external electric field, there is a 
violation in the conservation of the axial current. 
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N =
L

2⇡
eE ⌧0

Its rate of variation is

Q̇A =
QA(⌧0)

⌧0
=

e

⇡
LE

This implies a violation in the conservation of the axial current

@µJ
µ
A =

e

⇡
E

which gives the value of the axial anomaly in the Schwinger model:

@µhJµ
A(x)iA =

e

2⇡
✏

µ⌫Fµ⌫(x)
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The anomaly in the massless Schwinger model has surprising 
consequences…

In fact, in two dimensions the vector and axial-vector currents are closely 
related.

�5 = ��0�1 �µ�5 = ✏µ⌫�⌫

Hence, 

J

µ
A(x) = ✏

µ⌫
JVµ(x)

Thus the anomaly can be recast in terms of the vector current as

✏

µ⌫
@µhJV⌫(x)iA =

e

2⇡
✏

µ⌫Fµ⌫(x) =
e

⇡

✏

µ⌫
@µA⌫(x)
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In addition, the vector current has to satisfy the Maxwell equations

@µFµ⌫(x) = �ehJ⌫
V (x)iA ⇤A ⌫(x)� @

⌫
@µA µ(x) = �ehJ⌫

V(x)iA

✏

µ⌫
@µhJV⌫(x)iA =

e

2⇡
✏

µ⌫Fµ⌫(x) =
e

⇡

✏

µ⌫
@µA⌫(x)

Defining the pseudoscalar field                                          the two equations 
combine into:

Following the same steps, we also arrive at

U��(p) ⌘ J�(p) J�(�p)=
i

2⇡

p�
p

+

. (2.124)

Then, transforming the result back to position space, we find that the axial current su↵ers from
an anomaly given by

@µhJµ
A

(x)iA =
e

2⇡
F

+� =
e

4⇡
✏µ⌫Fµ⌫ . (2.125)

The existence of the axial anomaly in two dimensions has important physical consequences.
The vacuum expectation value of the gauge current acts as a source for the electromagnetic
field strength Fµ⌫ , as dictated by the Maxwell equations

@µF
µ⌫(x) = hJ⌫(x)iA . (2.126)

Using Eq. (2.103), it is easy to prove the identity

�µ�
5

= �✏µ⌫�⌫ , (2.127)

that implies that the vector and axial currents are related by the duality relation

J
Aµ(x) = �✏µ⌫J

⌫(x). (2.128)

Due to this identity, we can recast the anomaly equation (2.125) in terms of the vector current
as

✏µ⌫h@µJ⌫(x)iA = � e2

4⇡
✏µ⌫Fµ⌫(x). (2.129)

Using this, the equation of motion (2.126) reduce to the massive Klein-Gordon equation for the
pseudoscalar field F ⇤ ⌘ 1

2

✏µ⌫F µ⌫ = ✏µ⌫@µA⌫

✓

⇤+
e2

2⇡

◆

F ⇤(x) = 0. (2.130)

This short calculation shows how the axial anomaly results in a dynamical generation of a
mass in a parity-invariant theory without any mass term. This is achieved without breaking
Lorentz or gauge invariance. This massive pseudoscalar field corresponds to the single excitation
of a photon in two dimensions6. This mechanism can be thought of as a two-dimensional toy
version of technicolor, where the two-dimensional technifermions disappear to generate, through
the axial anomaly, a mass term for the gauge field. Unfortunately, this simple mechanism does
not work in four-dimensions, where the only known way to generate gauge field mass terms
while preserving gauge invariance is through the Higgs mechanism.

6In more technical terms, the two-dimensionsl gauge field Aµ can be decomposed as Aµ = @µ⌘ + ✏µ⌫@

⌫
⌘

0.
The first piece is a pure gauge, where the second one is the pseudoscalar degree of freedom.

31

✓
⇤+

e2

⇡

◆
F ⇤ = 0

This means that the Schwinger model contains a propagating mode with mass

m2 =
e2

⇡
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What is this mode? Let’s remember than in two dimensions, a vector can be 
decomposed as

Aµ = @µ⌘ + ✏µ⌫@
⌫⌘0

Due to the interaction with the fermions, the pseudoscalar mode acquires a 
mass. 

The 2D Dirac fermion works like a “technifermion” which produces a 
massive photon.

Unfortunately, this only works in 2D!
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What is this mode? Let’s remember than in two dimensions, a vector can be 
decomposed as

Aµ = @µ⌘ + ✏µ⌫@
⌫⌘0

pure gauge pseudoscalar

Due to the interaction with the fermions, the pseudoscalar mode acquires a 
mass. 

The 2D Dirac fermion works like a “technifermion” which produces a 
massive photon.

Unfortunately, this only works in 2D!
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The Dirac-sea picture of the anomaly in the Schwinger model underlines its IR 
character

The anomaly it is determined by a number of states crossing the E = 0               
Fermi level


