Including non-Abelian fields:
the singlet anomaly
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Instead of QED, we consider now a fermion coupled (in a certain
representation) to an external nhon=-Abelian gauge theory

S = [ dta(#y 0,0 — mipw + gAY
Classically, the gauge current JJ* = ¢y*TR satisfies the conservation equation
(D) =0 el 0, J + g f ) T =0
In addition we also have global axial transformations
W — eiﬁ’%w W —> @6735%
while its associated singlet axial current J{ = 1)y*~51) satisfies the identity
0, JK = 2imapi
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Similarly to QED, the calculation of the axial anomaly boils down to computing
g b
Ol T () = — L / A yrd ys0( (0T[4 (2) T (1) T3 (y2)]|0) 2 (5 ) A2 (y2) + ..

Diagrammatically, we have again two triangle diagrams, these time with gauge
group generators on the “vector” vertices

(IR)ik

[\

The two diagrams share the same color factor

Tr (TRTH) = Tr (ThT3)
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Ou(Jp (7)) s = —%/d4y1d4y23§6)(0’T[JK($)J3a(y1)JB (y2)]10).2 (y1) 5 (y2) + -

The rest of the calculation is identical to the case of QED. In momentum space,
we get

P
tg a o v
(p + Q)MZFMQ{B (p7 q) — 27_‘_2 1r (TRT]g,)e(XBO'I/p q + szraﬁ (p7 )

Adding the external gauge fields and Fourier transforming back to position
space, this leads to
2 2

OulTh (@) = g T (TRTR) O T Doy = g Ty (TR TH)Op (7))

A2 4
g2
0, (JH (1)) oy = = B9, Ty (dyaaﬁﬁ)

472

The problem with this result is that it is not gauge invariant!
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In fact, in the case of the singlet anomaly the triangle diagram is not enough.

We need to compute the box diagrams as well:

+ permutations

whose contributions are of the form

iTHPY (b, py,pa) = ig° Tr (TATRTE)

></ d*/ Tr(“ N i 5 . )
ot \ P W —mtic —p, P, —mtic [—p, —mtic f—m+ic

+ permutations
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In computing the axial-vector Ward identity kuil““o‘m(k,pl,pz) we encounter
the trace

TI' (% Z « ¢ B l o v )
BT —mtic [ —p,—mtic {—g —mtic f—mtic

that we rewrite using

Kvs = — K —m)+ (f —m)ys + 2mns

The first two terms cancel one propagator each, while the last one effectively
replaces the axial-vector current by the pseudoscalar bilinear.

(—mtic" P71 —H—m+ic

— 2
I —mtic P T i T —mtic Pl —mtic
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1
{ — K —m + e

2
Tl —mtic P T i T —mtie P —F —m+ic

s

{ —m + i€

Diagrammatically,

The last term contributes to 2im{11)) .7, whereas the first two “triangles” give
corrections to the anomaly cubic in the external field.

This combines with the triangle diagram to give the singlet anomaly:
2

2
O, (T2 () oy = 4g_€uua/38 Tr (%%% + gﬁyﬂaﬂﬁ)
7T
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)
{ — K —m + e
% m—|—7,675+75£ . +2m

s

{ —m + i€

"W —m i {—mtic °f — ¥ —mtic

Diagram matical I)" “seagull” vertices (two momenta)

The last term contributes to 2im{11)) .7, whereas the first two “triangles” give
corrections to the anomaly cubic in the external field.

This combines with the triangle diagram to give the singlet anomaly:
2

y
O, (T2 () oy = 4g_€uua/38 Tr (%%% + gdyﬂaﬂﬁ)
7T
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2

2
8M<JK('CU)>W - g_e,ul/ozBauTI‘ <Wyaa%5 -+ §$Z/,,£fab@75>

472
Here we identify the Chern-Simons form,

P

2 1
elﬂ/aﬁaluTr (chyﬁaeQ/B -+ gﬁonfOé:QKB) — ZTI (34’#1/34’“”)

so the singlet anomaly can be written as

4 5 )

g vor
0 (JN (X)) oy = = MV B Ty (3%”35@5)

- J

which is gauge invariant.

It is important to stress that although there is contribution to the anomaly
from the box diagram, its coefficient is determined by the triangle diagram
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Gauge anomalies
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Prelude: quantum symmetries vs. gauge invariance

By Wigner’s theorem, global symmetries are implemented on the Hilbert
space by unitary or antiunitary operators:

U(a) ) = [")  where, generically ) £ |¢)

As an example, let us look at the hydrogen atom: a SO(3) rotation acts on a
state as

U, 0,9)n, jm Z 2 ,(0,0,9)|n, j.m')

Gauge invariance is very different from this. In a gauge theory, a physical
state is represented by infinitely many rays in the Hilbert space.

The space of physical states is smaller than the “naive” Hilbert space of the
theory

%hys:%/g

M.A.Vazquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Auténoma de Madrid



Thus, gauge invariance is hot a symmetry but a redundancy. It is a
technicality that allows to describe a spin-1 (or spin-2) theory in a way
compatible with locality and Lorentz invariance.

Some of these redundant states, however, have negative norm, e.g.
T) = Ag|Q2) i (U|V) < O

It is thanks to gauge invariance that these redundant states are eliminated from
the physical spectrum

5gauge W>phys =0

Since dgauge Ao = €(x) we have

5gauge‘\lf> # () e |\If> is not a physical state
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The absence of ghost is preserved in time provided the theory is gauge invariant
at the quantum level

[5gaugea H] =0
which guarantees that

5gauge’w(0)> =0 s e 5gauge‘¢(t)> =0

i.e., the time evolution of a physical state is a physical state.

However, if gauge invariant is anomalous ghosts can be generated by

time evolution

the theory becomes nonunitary

.

gauge anomalies should be cancelled in physical theories at all cost
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Where can we expect gauge anomalies?

Since

P Yrr — VLR

a parity-invariant theory contains as many right- and left-handed fermions in the
same representation.

Thus, we can build gauge=-invariant mass terms and the theory can be

regularized using Pauli=Villars fields which preserve gauge invariance.

Gauge anomalies can arise only in parity=-violating theories.
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As a first example, we consider N Dirac fermions with charges (; chirally
coupled to an external electromagnetic field

5= 3 [t [0+ 05 (152 vyet]
L J K] LYy J
1=

This theory has a gauge symmetry

Ap(x) — Ay(x) + Opo(x)

where the associated conserved current is of the V-A type

_ 1 — .
T =3 Q" ( ”5>¢] with 9 J) =0
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To study the quantum conservation of the gauge current, we have to compute

1

0T @) =~ [ 'y OITITE @) TE () T3 (02)]10) (1) 5 (3

Diagrammatically, we have to evaluate a triangle diagram with three V-A
currents at its vertices

Jr
L , (summing over all
E YJ fermion species in
\ the loop)
j=1 J N
I

where Bose symmetry has to be imposed on all three vertices

Even before computing it, we see that the result should be proportional to the
quantity

N
au<J/£>£% ~ Z Q?‘
j=1
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To take advantage of our previous calculations, we write

1
g = (= I8

The anomaly is associated with the parity-violating part of the amplitude that
contains the terms

(O|T[JHTET0N|0) 4 (O T[T TG T0]|0) + (O|T[J4 T TR)|0) + (0| T[J4 TS T5]10)

Moving the 75 ‘s around, we find that the calculation reduces to the one of the
axial anomaly. The final result is:

0 (JF (%)) ey = — 967r ZQ3 P T F s

Gauge invariance is then anomalous unless

N
) Qf=0
=1
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To take advantage of our previous calculations, we write

1

=5 (KO)

The anomaly is associated with the pari
contains the terms

L

-violating part of the amplitude that

(O|T[JHTET0N0) 4 (O T[T TG T0]|0Y + (O|T[J4 T IR)|0) + (0| T[J4 TS T5]10)

Moving the 75 ‘s around, we find that the calculation reduces to the one of the
axial anomaly. The final result is:

N
( ) 1 ro
j=1

Gauge invariance is then anomalous unless

N
) Qf=0
=1
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A similar calculation for a left-handed theory

N
S = Z/d4x {i@j’y“auwj + @@ﬂ“ (1 i %’)) V<, }
i=j

yields

Oy (Tt ()) ZQ?’ B Fos

Finally, for a theory with Nk right-handed and N; left-handed fermions, the
anomaly of the gauge current reads

a,u<‘]'u (le) 96 Z Q3 Z QB GMVOéBgZ,LWgZaB
7T
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We analyze now the hon-Abelian case

S:/d4x {Z-E,yu(@u_iﬁu) <1—2V5>¢—|—Z’@’7“(@L—Z’RM) (1—;75)@4

where we have introduced external gauge fields coupled respectively to
the right- and left-handed component of the fermion

L.(r) =L (x)T* Ru(x) =R} (z)T*

This theory has a G, X GRr gauge invariance

W(z) — err@T” (1 _2%> () + eler@T (1 il %> Y(x)

Lu(x) — e’ E DT e~ L DT 4 b @T" £ ()e=iet ()T
Ryu(w) — ie" w79 e~ ieh (T 4 geh(T R (g)e~ick()T”
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Alternatively, we can describe the theory in terms of vector and axial
gauge fields

S = /d4az‘ {z@v“ (@L — 1V, — Z'Au%)w}

where V,, =V, T and A, = A, T are given by

VM:%(Lﬁnu) AM:%(RM—EM)
In terms of these fields, we have vector and axial gauge
transformations
P(@) — e DT () b(x) — P OT ()
Vu(z) — i’ 0T g, emiot ()T Va(z) — B @TY (3)e=i8" @T°
+ el @Ty ()t (@ A () — iei8"@T" g =B (@)T°
A (x) — @@ A (g)e~ 0" (@T" b BT Y (1) B ()T
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A word of warning:

Formally, the theory in terms of axial and vector gauge fields seems to have
a gauge symmetry

vaGA

However, non-Abelian axial transformations do not close so they
do not define proper gauge invariance

e,L-Ba,rIva,,y5Ez%-g/br_z-vb,,y5 _ ei(6a+6/a)Ta'y5‘|'%Baﬁlb[TG,Tb]‘F---

The transformations close only in the Abelian case.

Thus, the only bona fide gauge fields of the theory are the ones associated
with

Gr Gr Gy
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The classical conservation equations for the vector and axial-vector currents
are

_— 0, TH 4 fUPOVDTHE 4 fobe 4D JHE =
D,Jy )" =0  ———— .
oA (DpJy)® + f*CAL TR =0

To find the anomaly we have to calculate
1 — . — in
(DuT§) "y ay = - / PYDP( 0T} + FUEVETE + foAL TR ) el Aol PV midna)

Expanding in perturbation theory, the terms with two gauge fields come as
usual from the triangle diagram.The parity-violating ones are

J@C Jhe
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Anomaly = ((9,Jy" + fabCVb "+ fabCAb Ny,

In the non-Abelian case, there are terms in the triangle with three gauge fields.

Their contribution combines with terms coming from the (logarithmically
divergent) box diagrams

Job Y
Jh Iy Jy" Iy
Jhe Jhe
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Anomaly = (0,5 + VI AT ).

In the non-Abelian case, there are terms in the triangle with three gauge fields.

Their contribution combines with terms coming from the (logarithmically
divergent) box diagrams
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Anomaly = ((9,JL" + fabCVb “ 4 fabC.Ab Nv.a

Finally, there are also contributions to the anomaly from the (UV finite)
pentagon diagrams:

J‘(}b Jjb )
J‘J/d J‘(;
wua
JL Sy
J)\e
J‘A/e 1%
e J4
ab
ab JA
JV Jgd Jgd
Jhe J4"
T A
gl T
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What about the group theory factors!?

For triangle we have (AVV and AAA):

b
1y,
~ Euuaﬂpuqyﬂa (p)‘Q{B (q)

TiC;’ +Bose symmetry S e e S8 ~ It [Ta{Tba TC}}
Ty

whereas the result for the box is (AVVY and AAAV):

b
175y,
~ e,u,l/aﬁpg‘gfy(pl)da(pQ)‘Q%6<p3)

T TISE +Bose symmetry IR T e 1r {Ta{Tbv [Tca Td]}}

(Y]

__ - pcde a b e
M — if Tr{T {T,T}}
0
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Finally, we deal with the pentagon (AVVVV,AVVAA, and AAAA):

b
1k
Ty, ~ €uvap " (1) (p2) 5 (p3) / (pa)
T,g- +Bose symmetry  mooesl— ~ 1T [T“T[bTCTdTe]}
Tﬁdm
quw N fT[bCfde]sTr {TG{TT, TS}i|

* The box and pentagon diagrams only contribute to non-Abelian case.
* The cancellation condition for the triangle diagram
Tt {Ta{Tb,TC}} — 0

automatically implies the cancellation of the box and the
pentagon as well.

Therefore, to cancel the gauge anomaly we only have to care about the triangle!
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Computing all these diagrams and imposing vector current conservation

(DuJy)*)v,a =0

one arrives at the expression of the Bardeen anomaly

1 1
<(DM']K)CL>V,A — 1672 EILWQBTI {Ta |:V,LLI/V046 + §~/4,u1/~/40z5
8 32
where

Viw =0,V — 0V, — iV, V| —i|A,, A
Ay =0,A, —0A, —iV,, A —i|A, V]

The result is covariant only with respect vector gauge transformations (it
depends on the vector field strength V,,,, alone).
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1

(Dudy)*)v,a = 63

1
] 32
— § (AMAVVO‘B + A,LLVI/O(AB + V,UJI/AO(AB) T ?A/'LAVAO‘AB

This expression can be used as a “master formula” for different situations.

« QED axial anomaly: Abelian case, A, = 0,V,, = e,

62

aﬂ<JK>¢Qf — 1672 Euyaﬁg,ul/iggaﬁ

* Nonabelian singlet anomaly: 7 — 1. A, =0,V, = g%,

2

9 e
Oul i) = TPy (%ﬂaﬁ)
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B 1
1672

1
<(D,LLJK)CL>V,A euyaﬁTr {Ta |:V,uz/vo¢5 + gAuyAaﬁ
3 32

This expression can be used as a “master formula” for different situations.

« “Right-handed” QED: Abelian case, 7 — ()

1
AM:_VM:_§£M R e Q

1
JH = §(J5 ~ Jgﬁ)

N
1 ro
j=1
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We have seen that a theory of a chiral fermion is free of gauge anomalies
whenever they transform in a representation R satisfying

dee = Tr |TE{T%, TS} =0 (anomaly coefficients)

Let us do some group theory...

A Lie algebra representation is real or pseudoreal if there is an
intertwining operator § satisfying

sl — g real

Ta* = —STS™!
R R { gl — _ g pseudoreal

Then
a b C a b C I a \ * b \ * C \ *
Tr T {Th, To}| = Tr |[TR{TR. T} =T [(TR)* {(TR)", (TR)"}]
and for real and pseudoreal representations

Tr {(Tﬁ)*{(Tﬁ)*, (Tf{)*}} — Ty [STﬁs—l{Sbe{S—l,STf{S—l}} — Ty [Tﬁ{Tg,Tﬁ}}

M.A.Vazquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autonoma de Madrid



Thus, real and pseudoreal are anomaly-free representations

Tr {Tﬁ{be{, Tf{}} =0 for R real or pseudoreal

This happens for all representations of the following groups
e SU(2)
e SO(2N+1)
e SO(4N) for N>2
* Sp(2N) for N> 3
e and the exceptional groups G2, Fa, E7, E3

Other groups whose representations are neither real or pseudoreal but
are still safe are

e SO(4N+2) for N>2
° E6

In addition, the adjoint representation of any group is real and therefore
safe.
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Potentially dangerous Lie group are

« U(1).
e SU(N) for N > 3.

In the case of non-safe groups, anomalies can be elliminated either by
choosing an anomaly free representation or summing the
contribution of all chiral fields.

For example, if a theory contains a number of right- and left-handed
fermions transforming in representations 7'¢ and T"” the anomaly cancellation
condition reads:

S omlrerl e - Y T [reqrt, ey =o
right-handed left-handed

If the gauge group is a direct product, G ® ... ® G, there might be mixed
gauge anomalies associated with triangles with “different group factors” at
each vertex
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